High-resolution and compact serpentine integrated grating spectrometer

被引:6
作者
Brand, Michael [1 ]
Zhang, Bohan [2 ]
Onural, Deniz [2 ]
Al Qubaisi, Kenaish [2 ]
Popovic, Milos [2 ]
Dostart, Nathan [3 ]
Wagner, Kelvin [1 ]
机构
[1] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA
[2] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[3] NASA, Langley Res Ctr, Hampton, VA 23681 USA
基金
美国国家科学基金会;
关键词
WAVE-GUIDES; CHIP; EFFICIENT; EMISSION;
D O I
10.1364/JOSAB.423968
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Integrated astrophotonic spectrometers are integrated variants of conventional free-space spectrometers that offer significantly reduced size, weight, and cost and immunity to alignment errors, and can be readily integrated with other astrophotonic instruments such as nulling interferometers. Current integrated dispersive astrophotonic spectrometers are one-dimensional devices such as arrayed waveguide gratings or planar echelle gratings. These devices have been limited to 10(4) resolving powers and <1000 spectral bins due to having limited total optical delay paths and 1D detector array pixel densities. In this paper, we propose and demonstrate a high-resolution and compact astrophotonic serpentine integrated grating (SIG) spectrometer design based on a 2D dispersive serpentine optical phased array. The SIG device combines a 5.2 cm long folded delay line with grating couplers to create a large optical delay path along two dimensions in a compact integrated device footprint. Analogous to free-space crossed-dispersion high-resolution spectrometers, the SIG spectrometer maps spectral content to a 2D wavelength-beam-steered folded-raster emission pattern focused onto a 2D detector array. We demonstrate a SIG spectrometer with similar to 100 k resolving power and similar to 6750 spectral bins, which are approximately an order of magnitude higher than previous integrated photonic designs that operate over a wide bandwidth, in a 0.4 mm(2) footprint. We measure a Rayleigh resolution of 1.93 +/- 0.07 GHz and an operational bandwidth from 1540 nm to 1650 nm. Finally, we discuss refinements of the SIG spectrometer that improve its resolution, bandwidth, and throughput. These results show that SIG spectrometer technology provides a path towards miniaturized, high-resolution spectrometers for applications in astronomy and beyond. (C) 2021 Optical Society of America
引用
收藏
页码:A75 / A85
页数:11
相关论文
共 39 条
  • [1] Integrated Metamaterial Interfaces for Self-Aligned Fiber-to-Chip Coupling in Volume Manufacturing
    Barwicz, Tymon
    Peng, Bo
    Leidy, Robert
    Janta-Polczynski, Alexander
    Houghton, Thomas
    Khater, Marwan
    Kamlapurkar, Swetha
    Engelmann, Sebastian
    Fortier, Paul
    Boyer, Nicolas
    Green, William M. J.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2019, 25 (03)
  • [2] The photonic lantern
    Birks, T. A.
    Gris-Sanchez, I.
    Yerolatsitis, S.
    Leon-Saval, S. G.
    Thomson, R. R.
    [J]. ADVANCES IN OPTICS AND PHOTONICS, 2015, 7 (02): : 107 - 167
  • [3] Instruments without optics: an integrated photonic spectrograph
    Bland-Hawthorn, J.
    Horton, A.
    [J]. GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY, PTS 1- 3, 2006, 6269
  • [4] Holographic planar lightwave circuit for on-chip spectroscopy
    Calafiore, Giuseppe
    Koshelev, Alexander
    Dhuey, Scott
    Goltsov, Alexander
    Sasorov, Pavel
    Babin, Sergey
    Yankov, Vladimir
    Cabrini, Stefano
    Peroz, Christophe
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2014, 3 : e203 - e203
  • [5] A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens
    Chaganti, K
    Salakhutdinov, I
    Avrutsky, I
    Auner, GW
    [J]. OPTICS EXPRESS, 2006, 14 (09) : 4064 - 4072
  • [6] A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with submicrometer aperture waveguides
    Cheben, P.
    Schmid, J. H.
    Delage, A.
    Densmore, A.
    Janz, S.
    Lamontagne, B.
    Lapointe, J.
    Post, E.
    Waldron, P.
    Xu, D. -X.
    [J]. OPTICS EXPRESS, 2007, 15 (05) : 2299 - 2306
  • [7] Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform
    Cherchi, Matteo
    Ylinen, Sami
    Harjanne, Mikko
    Kapulainen, Markku
    Aalto, Timo
    [J]. OPTICS EXPRESS, 2013, 21 (15): : 17814 - 17823
  • [8] First starlight spectrum captured using an integrated photonic micro-spectrograph
    Cvetojevic, N.
    Jovanovic, N.
    Betters, C.
    Lawrence, J. S.
    Ellis, S. C.
    Robertson, G.
    Bland-Hawthorn, J.
    [J]. ASTRONOMY & ASTROPHYSICS, 2012, 544
  • [9] Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy
    Cvetojevic, Nick
    Jovanovic, Nemanja
    Lawrence, Jon
    Withford, Michael
    Bland-Hawthorn, Joss
    [J]. OPTICS EXPRESS, 2012, 20 (03): : 2062 - 2072
  • [10] THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA
    Dawson, Kyle S.
    Kneib, Jean -Paul
    Percival, Will J.
    Alam, Shadab
    Albareti, Franco D.
    Anderson, Scott F.
    Armengaud, Eric
    Aubourg, Eric
    Bailey, Stephen
    Bautista, Julian E.
    Berlind, Andreas A.
    Bershady, Matthew A.
    Beutler, Florian
    Bizyaev, Dmitry
    Blanton, Michael R.
    Blomqvist, Michael
    Bolton, Adam S.
    Boyy, Jo
    Brandt, W. N.
    Brinkmann, Jon
    Brownstein, Joel R.
    Burtin, Etienne
    Busca, N. G.
    Cai, Zheng
    Chuang, Chia-Hsun
    Clerc, Nicolas
    Comparat, Johan
    Cope, Frances
    Croft, Rupert A. C.
    Cruz-Gonzalez, Irene
    da Costa, Lutz N.
    Cousinou, Marie-Claude
    Darling, Jeremy
    de la Macorra, Axel
    de la Torre, Sylvain
    Delubac, Timothee
    des Bourboux, Helion du Mas
    Dwelly, Tom
    Ealet, Anne
    Eisenstein, Daniel J.
    Eracleous, Michael
    Escoffier, S.
    Fan, Xiaohui
    Finoguenov, Alexis
    Font-Ribera, Andreu
    Frinchaboy, Peter
    Gaulme, Patrick
    Georgakakis, Antonis
    Green, Paul
    Guo, Hong
    [J]. ASTRONOMICAL JOURNAL, 2016, 151 (02)