Transcriptome Analysis of Purple Pericarps in Common Wheat (Triticum aestivum L.)

被引:24
|
作者
Liu, Di [1 ,2 ]
Li, Shiming [1 ,2 ]
Chen, Wenjie [1 ,2 ]
Zhang, Bo [1 ,2 ]
Liu, Dengcai [1 ,2 ]
Liu, Baolong [1 ,2 ]
Zhang, Huaigang [1 ,2 ]
机构
[1] Chinese Acad Sci, Northwest Inst Plateau Biol, Key Lab Adaptat & Evolut Plateau Biota AEPB, Qinghai 810008, Xining, Peoples R China
[2] Qinghai Prov Key Lab Crop Mol Breeding, Xining 810008, Peoples R China
来源
PLOS ONE | 2016年 / 11卷 / 05期
基金
中国国家自然科学基金;
关键词
ANTHOCYANIN BIOSYNTHESIS; GRAIN COLOR; GENES; RICE; BLUE; PIGMENTATION;
D O I
10.1371/journal.pone.0155428
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Wheat (Triticum aestivum L.) cultivars possessing purple grain arethought to be more nutritious because of high anthocyanin contents in the pericarp. Comparative transcriptome analysis of purple (cv Gy115) and white pericarps was carried out using next-generation sequencing technology. There were 23,642 unigenes significantly differentially expressed in the purple and white pericarps, including 9945 up-regulated and 13,697 down-regulated. The differentially expressed unigenes were mainly involved in encoding components of metabolic pathways, The flavonoid biosynthesis pathway was the most represented in metabolic pathways. In the transcriptome of purple pericarp in Gy115, most structural and regulatory genes biosynthesizing anthocyanin were identified, and had higher expression levels than in white pericarp. The largestunigene of anthocyanin biosynthesis in Gy115 was longer than the reference genes, which implies that high-throughput sequencing could isolate the genes of anthocyanin biosynthesis in tissues or organs with high anthocyanin content. Based on present and previous results, three unigenes of MYB gene on chromosome 7BL and three unigenes of MYC on chromosome 2AL were predicted as candidate genes for the purple grain trait. This article was the first to provide a systematic overview comparing the transcriptomes of purple and white pericarps in common wheat, which should be very valuable for identifying the key genes for the purple pericarp trait.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] ESTIMATION OF SOME GENETIC PARAMETERS USING LINExTESTER ANALYSIS OF COMMON WHEAT (TRITICUM AESTIVUM L.)
    Hama-Amin, T. N.
    Towfiq, S., I
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2019, 17 (04): : 9735 - 9752
  • [32] GENETIC ANALYSIS OF SPIKE TRAITS IN WHEAT (Triticum aestivum L.)
    Shamsabadi, Ensieh Es'haghi
    Sabouri, Hossein
    Soughi, Habibollah
    Sajadi, Seyed Javad
    GENETIKA-BELGRADE, 2020, 52 (02): : 559 - 569
  • [33] Proteomic analysis of wheat (Triticum aestivum L.) hybrid necrosis
    Jiang, Qiyan
    Chen, Hui
    Pan, Xinglai
    Pan, Qianying
    Shi, Yinhong
    Li, Xiurong
    Zhang, Guiyun
    Wang, Yongjie
    Xie, Sangang
    Shen, Shihua
    PLANT SCIENCE, 2008, 175 (03) : 394 - 401
  • [34] Transcriptome Analysis of Early Senescence in the Post-Anthesis Flag Leaf of Wheat (Triticum aestivum L.)
    Lei, Ling
    Wu, Dan
    Cui, Chao
    Gao, Xiang
    Yao, Yanjie
    Dong, Jian
    Xu, Liangsheng
    Yang, Mingming
    PLANTS-BASEL, 2022, 11 (19):
  • [35] Transcriptome Analysis Reveals Complex Molecular Mechanisms Underlying UV Tolerance of Wheat (Triticum aestivum, L.)
    Wang, Fang
    Xu, Zhibin
    Fan, Xiaoli
    Zhou, Qiang
    Cao, Jun
    Ji, Guangsi
    Jing, Shuzhong
    Feng, Bo
    Wang, Tao
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2019, 67 (02) : 563 - 577
  • [36] Determination of Some Agronomic Traits by Diallel Hybrid Analysis in Common Wheat (Triticum aestivum L.)
    Cifci, Esra Aydogan
    Yagdi, Koeksal
    JOURNAL OF AGRICULTURAL SCIENCES-TARIM BILIMLERI DERGISI, 2007, 13 (04): : 354 - 364
  • [37] Comparative Transcriptome Analysis of Male Sterile Anthers Induced by High Temperature in Wheat (Triticum aestivum L.)
    Liu, Hongzhan
    Sun, Zhongke
    Hu, Lizong
    Li, Chaoqiong
    Wang, Xueqin
    Yue, Zonghao
    Han, Yulin
    Yang, Guangyu
    Ma, Keshi
    Yin, Guihong
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [38] Comparative Transcriptome Analysis Reveals Color Formation Mechanism in Two Wheat (Triticum aestivum L.) Cultivars
    T. Song
    J. Li
    B. Han
    Z. Liu
    F. Sun
    Y. Niu
    W. You
    P. Wang
    X. Hua
    P. Su
    Russian Journal of Genetics, 2023, 59 : 19 - 27
  • [39] Transcriptome analysis of drought response in a domestic wheat cultivar (Triticum aestivum L. cv. Keumkang)
    Young-Cheon Kim
    Gee Woo Kim
    Jeong Hwan Lee
    Plant Biotechnology Reports, 2023, 17 : 715 - 724
  • [40] Transcriptome analysis of drought response in a domestic wheat cultivar (Triticum aestivum L. cv. Keumkang)
    Kim, Young-Cheon
    Kim, Gee Woo
    Lee, Jeong Hwan
    PLANT BIOTECHNOLOGY REPORTS, 2023, 17 (05) : 715 - 724