Interactive Image Segmentation of MARS Datasets Using Bag of Features

被引:1
作者
Kanithi, Praveenkumar [1 ]
de Ruiter, Niels J. A. [1 ,2 ,3 ,4 ]
Amma, Maya R. [4 ]
Lindeman, Robert W. [1 ]
Butler, Anthony P. H. [1 ,2 ,4 ,5 ,6 ]
Butler, Philip H. [1 ,2 ,4 ,5 ,6 ]
Chernoglazov, Alexander I. [1 ,2 ]
Mandalika, V. B. H. [1 ,2 ]
Adebileje, Sikiru A. [1 ,4 ]
Alexander, Steven D. [2 ]
Anjomrouz, Marzieh [2 ]
Asghariomabad, Fatemeh [4 ]
Atharifard, Ali [2 ]
Atlas, James [3 ]
Bamford, Benjamin [4 ]
Bell, Stephen T. [2 ]
Bheesette, Srinidhi [4 ,6 ]
Carbonez, Pierre [4 ,6 ]
Chambers, Claire [3 ]
Clark, Jennifer A. [4 ,7 ]
Colgan, Frances [4 ]
Crighton, Jonathan S. [4 ]
Dahal, Shishir [4 ,8 ,9 ]
Damet, Jerome [4 ,6 ,10 ]
Doesburg, Robert M. N. [2 ]
Duncan, Neryda [3 ]
Ghodsian, Nooshin [3 ]
Gieseg, Steven P. [4 ,5 ,6 ]
Goulter, Brian P. [2 ]
Gurney, Sam [4 ]
Healy, Joseph L. [2 ]
Kirkbride, Tracy [7 ]
Lansley, Stuart P. [2 ,6 ]
Lowe, Chiara [4 ]
Marfo, Emmanuel [4 ]
Matanaghi, Aysouda [4 ]
Moghiseh, Mahdieh [2 ,4 ]
Palmer, David [11 ]
Panta, Raj K. [2 ,4 ]
Prebble, Hannah M. [2 ]
Raja, Aamir Y. [2 ,4 ]
Renaud, Peter [3 ,4 ,12 ]
Sayous, Yann [3 ]
Schleich, Nanette [12 ]
Searle, Emily [3 ]
Sheeja, Jereena S. [4 ]
Uddin, Rayhan [3 ]
Vanden Broeke, Lieza [2 ]
Vivek, V. S. [2 ]
Walker, E. Peter [4 ]
机构
[1] Univ Canterbury, Human Interface Technol Lab New Zealand, Christchurch 8140, New Zealand
[2] MARS Bioimaging Ltd, Christchurch 8140, New Zealand
[3] Univ Canterbury, Sch Phys & Chem Sci, Christchurch 8140, New Zealand
[4] Univ Otago Christchurch, Dept Radiol, Christchurch 8011, New Zealand
[5] Univ Canterbury, Christchurch 8140, New Zealand
[6] European Org Nucl Res CERN, CH-1211 Geneva, Switzerland
[7] Ara Inst Canterbury, Christchurch 8011, New Zealand
[8] Minist Hlth, Kathmandu 44600, Nepal
[9] Natl Acad Med Sci, Kathmandu 44600, Nepal
[10] Univ Lausanne Hosp, Inst Radiat Phys, CH-1011 Lausanne, Switzerland
[11] Lincoln Univ, Dept Wine Food & Mol Biosci, Lincoln 7647, New Zealand
[12] Univ Otago, Dept Radiat Therapy, Wellington 6242, New Zealand
关键词
Bag of features; interactive image segmentation; MARS imaging; vector of locally aggregated descriptor (VLAD); PET-CT; GRADIENT;
D O I
10.1109/TRPMS.2020.3030045
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In this article, we propose a slice-based interactive segmentation of spectral CT datasets using a bag of features method. The data are acquired from a MARS scanner that divides up the X-ray spectrum into multiple energy bins for imaging. In literature, most existing segmentation methods are limited to performing a specific task or tied to a particular imaging modality. Therefore, when applying generalized methods to MARS datasets, the additional energy information acquired from the scanner cannot be sufficiently utilized. We describe a new approach that circumvents this problem by effectively aggregating the data from multiple channels. Our method solves a classification problem to get the solution for segmentation. Starting with a set of labeled pixels, we partition the data using superpixels. Then, a set of local descriptors, extracted from each superpixel, are encoded into a codebook and pooled together to create a global superpixel-level descriptor (bag of features representation). We propose to use the vector of locally aggregated descriptors as our encoding/pooling strategy, as it is efficient to compute and leads to good results with simple linear classifiers. A linear support vector machine is then used to classify the superpixels into different labels. The proposed method was evaluated on multiple MARS datasets. Experimental results show that our method achieved an average of more than 10% increase in the accuracy over other state-of-the-art methods.
引用
收藏
页码:559 / 567
页数:9
相关论文
共 44 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]   Efficient Interactive Annotation of Segmentation Datasets with Polygon-RNN plus [J].
Acuna, David ;
Ling, Huan ;
Kar, Amlan ;
Fidler, Sanja .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :859-868
[3]   All about VLAD [J].
Arandjelovic, Relja ;
Zisserman, Andrew .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :1578-1585
[4]   Joint segmentation of anatomical and functional images: Applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images [J].
Bagci, Ulas ;
Udupa, Jayaram K. ;
Mendhiratta, Neil ;
Foster, Brent ;
Xu, Ziyue ;
Yao, Jianhua ;
Chen, Xinjian ;
Mollura, Daniel J. .
MEDICAL IMAGE ANALYSIS, 2013, 17 (08) :929-945
[5]  
Boykov YY, 2001, EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL I, PROCEEDINGS, P105, DOI 10.1109/ICCV.2001.937505
[6]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[7]   A NOTE ON THE GRADIENT OF A MULTIIMAGE [J].
DIZENZO, S .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1986, 33 (01) :116-125
[8]   HyperDense-Net: A Hyper-Densely Connected CNN for Multi-Modal Image Segmentation [J].
Dolz, Jose ;
Gopinath, Karthik ;
Yuan, Jing ;
Lombaert, Herve ;
Desrosiers, Christian ;
Ben Ayed, Ismail .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (05) :1116-1126
[9]   Random walks for image segmentation [J].
Grady, Leo .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (11) :1768-1783
[10]  
Gulshan V., 2012, THESIS U OXFORD OXFO