NAIL, a software toolset for inferring, analyzing and visualizing regulatory networks

被引:11
作者
Hurley, Daniel G. [1 ,2 ,3 ,4 ]
Cursons, Joseph [1 ,4 ]
Wang, Yi Kan [1 ,5 ]
Budden, David M. [4 ]
Print, Cristin G. [2 ,3 ,6 ]
Crampin, Edmund J. [1 ,4 ,7 ,8 ]
机构
[1] Univ Auckland, Auckland Bioengn Inst, Auckland 1001, New Zealand
[2] Univ Auckland, Fac Med & Hlth Sci, Sch Med Sci, Dept Mol Med & Pathol, Auckland 1001, New Zealand
[3] Univ Auckland, Bioinformat Inst, Auckland 1001, New Zealand
[4] Univ Auckland, Maurice Wilkins Ctr, Auckland 1001, New Zealand
[5] Univ Melbourne, Melbourne Sch Engn, Syst Biol Lab, Melbourne, Vic 3010, Australia
[6] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
[7] Univ Melbourne, Sch Med, Melbourne, Vic 3010, Australia
[8] British Columbia Canc Agcy, Dept Mol Oncol, Vancouver, BC V5Z 4E6, Canada
关键词
TIME-COURSE DATA; INFERENCE; ARACNE;
D O I
10.1093/bioinformatics/btu612
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The wide variety of published approaches for the problem of regulatory network inference makes using multiple inference algorithms complex and time-consuming. Network Analysis and Inference Library (NAIL) is a set of software tools to simplify the range of computational activities involved in regulatory network inference. It uses a modular approach to connect different network inference algorithms to the same visualization and network-based analyses. NAIL is technology-independent and includes an interface layer to allow easy integration of components into other applications.
引用
收藏
页码:277 / 278
页数:2
相关论文
共 10 条
[1]  
[Anonymous], ARXIV14083270
[2]   Network medicine: a network-based approach to human disease [J].
Barabasi, Albert-Laszlo ;
Gulbahce, Natali ;
Loscalzo, Joseph .
NATURE REVIEWS GENETICS, 2011, 12 (01) :56-68
[3]   Advantages and limitations of current network inference methods [J].
De Smet, Riet ;
Marchal, Kathleen .
NATURE REVIEWS MICROBIOLOGY, 2010, 8 (10) :717-729
[4]   Gene network inference and visualization tools for biologists: application to new human transcriptome datasets [J].
Hurley, Daniel ;
Araki, Hiromitsu ;
Tamada, Yoshinori ;
Dunmore, Ben ;
Sanders, Deborah ;
Humphreys, Sally ;
Affara, Muna ;
Imoto, Seiya ;
Yasuda, Kaori ;
Tomiyasu, Yuki ;
Tashiro, Kosuke ;
Savoie, Christopher ;
Cho, Vicky ;
Smith, Stephen ;
Kuhara, Satoru ;
Miyano, Satoru ;
Charnock-Jones, D. Stephen ;
Crampin, Edmund J. ;
Print, Cristin G. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (06) :2377-2398
[5]   Differential network biology [J].
Ideker, Trey ;
Krogan, Nevan J. .
MOLECULAR SYSTEMS BIOLOGY, 2012, 8
[6]   ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context [J].
Margolin, AA ;
Nemenman, I ;
Basso, K ;
Wiggins, C ;
Stolovitzky, G ;
Dalla Favera, R ;
Califano, A .
BMC BIOINFORMATICS, 2006, 7 (Suppl 1)
[7]   Crowdsourcing Network Inference: The DREAM Predictive Signaling Network Challenge [J].
Prill, Robert J. ;
Saez-Rodriguez, Julio ;
Alexopoulos, Leonidas G. ;
Sorger, Peter K. ;
Stolovitzky, Gustavo .
SCIENCE SIGNALING, 2011, 4 (189)
[8]   Reconstructing biochemical pathways from time course data [J].
Srividhya, Jeyaraman ;
Crampin, Edmund J. ;
McSharry, Patrick E. ;
Schnell, Santiago .
PROTEOMICS, 2007, 7 (06) :828-838
[9]   Advances to Bayesian network inference for generating causal networks from observational biological data [J].
Yu, J ;
Smith, VA ;
Wang, PP ;
Hartemink, AJ ;
Jarvis, ED .
BIOINFORMATICS, 2004, 20 (18) :3594-3603
[10]   TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach [J].
Zoppoli, Pietro ;
Morganella, Sandro ;
Ceccarelli, Michele .
BMC BIOINFORMATICS, 2010, 11