Analysis and numerical simulation of multicomponent system with Atangana-Baleanu fractional derivative

被引:39
作者
Owolabi, Kolade M. [1 ,2 ]
机构
[1] Univ Free State, Fac Nat & Agr Sci, Inst Groundwater Studies, ZA-9300 Bloemfontein, South Africa
[2] Fed Univ Technol Akure, Dept Math Sci, PMB 704, Akure, Ondo State, Nigeria
关键词
Mittag-Leffler; Fractional derivative; Hopf-bifurcation; Oscillations; Predator-prey; Stability analysis; REACTION-DIFFUSION EQUATIONS; ORDER; KERNEL; MODELS;
D O I
10.1016/j.chaos.2018.08.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the mathematical analysis and numerical simulation of time-fractional multicomponent systems. Here, the classical time derivatives in such systems are replace with the Atangana-Baleanu fractional derivative in the sense of Caputo. This derivative is found useful in the sense that it combines both the non-local and nonsingular kernels in its formulation. A two-step family of Adams-Bashforth method is derived for the approximation of the Atangana-Baleanu derivative. Numerical experiments presented for different instances of alpha, 0 < alpha <= 1 correspond to our theoretical findings. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:127 / 134
页数:8
相关论文
共 30 条
[11]  
Garvie Marcus R., 2010, Journal of Biological Dynamics, V4, P559, DOI 10.1080/17513750903484321
[12]   New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications [J].
Gomez-Aguilar, J. F. ;
Atangana, Abdon .
EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (01)
[13]   Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel [J].
Gomez-Aguilar, J. F. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 465 :562-572
[14]   Fractional Lienard type model of a pipeline within the fractional derivative without singular kernel [J].
Gomez-Aguilar, J. F. ;
Torres, L. ;
Yepez-Martinez, H. ;
Baleanu, D. ;
Reyes, J. M. ;
Sosa, I. O. .
ADVANCES IN DIFFERENCE EQUATIONS, 2016,
[15]   Modeling diffusive transport with a fractional derivative without singular kernel [J].
Gomez-Aguilar, J. F. ;
Lopez-Lopez, M. G. ;
Alvarado-Martinez, V. M. ;
Reyes-Reyes, J. ;
Adam-Medina, M. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 447 :467-481
[16]  
Murray J. D., 2001, Mathematical biology II: Spatial models and biomedical applications, V3
[17]   Chaotic behaviour in system of noninteger-order ordinary differential equations [J].
Owolabi, Kolade M. ;
Atangana, Abdon .
CHAOS SOLITONS & FRACTALS, 2018, 115 :362-370
[18]   Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations [J].
Owolabi, Kolade M. ;
Atangana, Abdon .
CHAOS SOLITONS & FRACTALS, 2018, 111 :119-127
[19]   Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator [J].
Owolabi, Kolade M. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03)
[20]   Mathematical analysis and numerical simulation of chaotic noninteger order differential systems with Riemann-Liouville derivative [J].
Owolabi, Kolade M. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (01) :274-295