Analysis and numerical simulation of multicomponent system with Atangana-Baleanu fractional derivative

被引:39
作者
Owolabi, Kolade M. [1 ,2 ]
机构
[1] Univ Free State, Fac Nat & Agr Sci, Inst Groundwater Studies, ZA-9300 Bloemfontein, South Africa
[2] Fed Univ Technol Akure, Dept Math Sci, PMB 704, Akure, Ondo State, Nigeria
关键词
Mittag-Leffler; Fractional derivative; Hopf-bifurcation; Oscillations; Predator-prey; Stability analysis; REACTION-DIFFUSION EQUATIONS; ORDER; KERNEL; MODELS;
D O I
10.1016/j.chaos.2018.08.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the mathematical analysis and numerical simulation of time-fractional multicomponent systems. Here, the classical time derivatives in such systems are replace with the Atangana-Baleanu fractional derivative in the sense of Caputo. This derivative is found useful in the sense that it combines both the non-local and nonsingular kernels in its formulation. A two-step family of Adams-Bashforth method is derived for the approximation of the Atangana-Baleanu derivative. Numerical experiments presented for different instances of alpha, 0 < alpha <= 1 correspond to our theoretical findings. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:127 / 134
页数:8
相关论文
共 30 条
[1]   Chaos on the Vallis Model for El Nino with Fractional Operators [J].
Alkahtani, Badr Saad T. ;
Atangana, Abdon .
ENTROPY, 2016, 18 (04)
[2]  
[Anonymous], 2002, Mathematical biology, Interdisciplinary applied mathematics
[3]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[6]   NEW NUMERICAL APPROACH FOR FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Atangana, Abdon ;
Owolabi, Kolade M. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2018, 13 (01)
[7]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[8]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[9]  
Caputo M., 2015, Progress Fract. Diff. Appl, V1, P73, DOI DOI 10.12785/PFDA/010201
[10]  
Gakkhar S., 2005, COMMUN NONLINEAR SCI, V10, P105, DOI DOI 10.1016/S1007-5704(03)00120-5