How cytochrome c oxidase can pump four protons per oxygen molecule at high electrochemical gradient

被引:34
作者
Blomberg, Margareta R. A. [1 ]
Siegbahn, Per E. M. [1 ]
机构
[1] Stockholm Univ, Dept Organ Chem, Arrhenius Lab, SE-10691 Stockholm, Sweden
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2015年 / 1847卷 / 03期
关键词
Cytochrome c oxidase; Proton pumping; Density functional theory; Energy profile; Reduction potential; COUPLED ELECTRON-TRANSFER; HEME; BINDING; O-2; TRANSLOCATION; MECHANISM; STOICHIOMETRY; ACTIVATION; ENERGETICS; REDUCTION;
D O I
10.1016/j.bbabio.2014.12.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Experiments have shown that the A-family cytochrome c oxidases pump four protons per oxygen molecule, also at a high electrochemical gradient. This has been considered a puzzle, since two of the reduction potentials involved, Cu(II) and Fe(III), were estimated from experiments to be too low to afford proton pumping at a high gradient The present quantum mechanical study (using hybrid density functional theory) suggests a solution to this puzzle. First, the calculations show that the charge compensated Cu(II) potential for Cu-B is actually much higher than estimated from experiment, of the same order as the reduction potentials for the tyrosyl radical and the ferryl group, which are also involved in the catalytic cycle. The reason for the discrepancy between theory and experiment is the very large uncertainty in the experimental observations used to estimate the equilibrium potentials, mainly caused by the lack of methods for direct determination of reduced Cu-B. Second, the calculations show that a high energy metastable state, labeled E-H, is involved during catalytic turnover. The E-H state mixes the low reduction potential of Fe(III) in heme a(3) with another, higher potential, here suggested to be that of the tyrosyl radical, resulting in enough exergonicity to allow proton pumping at a high gradient In contrast, the corresponding metastable oxidized state, O-H, is not significantly higher in energy than the resting state, O. Finally, to secure the involvement of the high energy E-H state it is suggested that only one proton is taken up via the K-channel during catalytic turnover. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:364 / 376
页数:13
相关论文
共 40 条
[1]  
[Anonymous], 2010, GAUSSIAN 09 REVISION
[2]  
[Anonymous], 2009, JAG 7 6
[3]   OXYGEN ACTIVATION AND THE CONSERVATION OF ENERGY IN CELL RESPIRATION [J].
BABCOCK, GT ;
WIKSTROM, M .
NATURE, 1992, 356 (6367) :301-309
[4]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[5]   The catalytic cycle of cytochrome c oxidase is not the sum of its two halves [J].
Bloch, D ;
Belevich, I ;
Jasaitis, A ;
Ribacka, C ;
Puustinen, A ;
Verkhovsky, MI ;
Wikström, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (02) :529-533
[6]   Quantum chemistry applied to the mechanisms of transition metal containing enzymes -: Cytochrome c oxidase, a particularly challenging case [J].
Blomberg, Margareta R. A. ;
Siegbahn, Per E. M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (12) :1373-1384
[7]   Proton pumping in cytochrome c oxidase: Energetic requirements and the role of two proton channels [J].
Blomberg, Margareta R. A. ;
Siegbahn, Per E. M. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2014, 1837 (07) :1165-1177
[8]   Quantum Chemical Studies of Mechanisms for Metalloenzymes [J].
Blomberg, Margareta R. A. ;
Borowski, Tomasz ;
Himo, Fahmi ;
Liao, Rong-Zhen ;
Siegbahn, Per E. M. .
CHEMICAL REVIEWS, 2014, 114 (07) :3601-3658
[9]   Mechanism for N2O Generation in Bacterial Nitric Oxide Reductase: A Quantum Chemical Study [J].
Blomberg, Margareta R. A. ;
Siegbahn, Per E. M. .
BIOCHEMISTRY, 2012, 51 (25) :5173-5186
[10]   Modeling electron transfer in biochemistry:: A quantum chemical study of charge separation in Rhodobacter sphaeroides and photosystem II [J].
Blomberg, MRA ;
Siegbahn, PEM ;
Babcock, GT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (34) :8812-8824