Identification of a core TP53 transcriptional program with highly distributed tumor suppressive activity

被引:114
作者
Andrysik, Zdenek [1 ,2 ,3 ]
Galbraith, Matthew D. [1 ,2 ,3 ]
Guarnieri, Anna L. [1 ,2 ,3 ]
Zaccara, Sara [4 ]
Sullivan, Kelly D. [1 ,2 ,3 ]
Pandey, Ahwan [1 ,2 ,3 ]
MacBeth, Morgan [1 ,2 ,3 ]
Inga, Alberto [4 ]
Espinosa, Joaquin M. [1 ,2 ,3 ,5 ]
机构
[1] Univ Colorado, Linda Crn Inst Syndrome, Anschutz Med Campus, Aurora, CO 80045 USA
[2] Univ Colorado, Dept Pharmacol, Anschutz Med Campus, Aurora, CO 80045 USA
[3] Univ Colorado, Dept Mol Cellular & Dev Biol, Boulder, CO 80203 USA
[4] Univ Trento, Ctr Integrat Biol CIBIO, I-38123 Trento, TN, Italy
[5] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
EMBRYONIC STEM-CELLS; P53 TARGET GENES; DNA-DAMAGE; MDM2; AMPLIFICATION; IN-VIVO; CANCER; GENOME; ACTIVATION; MUTATION; BINDING;
D O I
10.1101/gr.220533.117
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The tumor suppressor TP53 is the most frequently mutated gene product in human cancer. Close to half of all solid tumors carry inactivating mutations in the TP53 gene, while in the remaining cases, TP53 activity is abrogated by other oncogenic events, such as hyperactivation of its endogenous repressors MDM2 or MDM4. Despite identification of hundreds of genes regulated by this transcription factor, it remains unclear which direct target genes and downstream pathways are essential for the tumor suppressive function of TP53. We set out to address this problem by generating multiple genomic data sets for three different cancer cell lines, allowing the identification of distinct sets of TP53-regulated genes, from early transcriptional targets through to late targets controlled at the translational level. We found that although TP53 elicits vastly divergent signaling cascades across cell lines, it directly activates a core transcriptional program of similar to 100 genes with diverse biological functions, regardless of cell type or cellular response to TP53 activation. This core program is associated with high-occupancy TP53 enhancers, high levels of paused RNA polymerases, and accessible chromatin. Interestingly, two different shRNA screens failed to identify a single TP53 target gene required for the anti-proliferative effects of TP53 during pharmacological activation in vitro. Furthermore, bioinformatics analysis of thousands of cancer genomes revealed that none of these core target genes are frequently inactivated in tumors expressing wild-type TP53. These results support the hypothesis that TP53 activates a genetically robust transcriptional program with highly distributed tumor suppressive functions acting in diverse cellular contexts.
引用
收藏
页码:1645 / 1657
页数:13
相关论文
共 44 条
[21]   Distinct Regulatory Mechanisms and Functions for p53-Activated and p53-Repressed DNA Damage Response Genes in Embryonic Stem Cells [J].
Li, Mangmang ;
He, Yunlong ;
Dubois, Wendy ;
Wu, Xiaolin ;
Shi, Jianxin ;
Huang, Jing .
MOLECULAR CELL, 2012, 46 (01) :30-42
[22]   Tumor Suppression in the Absence of p53-Mediated Cell-Cycle Arrest, Apoptosis, and Senescence [J].
Li, Tongyuan ;
Kon, Ning ;
Jiang, Le ;
Tan, Minjia ;
Ludwig, Thomas ;
Zhao, Yingming ;
Baer, Richard ;
Gu, Wei .
CELL, 2012, 149 (06) :1269-1283
[23]   Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC) [J].
Lin, Chengqi ;
Garrett, Alexander S. ;
De Kumar, Bony ;
Smith, Edwin R. ;
Gogol, Madelaine ;
Seidel, Christopher ;
Krumlauf, Robb ;
Shilatifard, Ali .
GENES & DEVELOPMENT, 2011, 25 (14) :1486-1498
[24]   Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells [J].
Menendez, Daniel ;
Thuy-Ai Nguyen ;
Freudenberg, Johannes M. ;
Mathew, Viju J. ;
Anderson, Carl W. ;
Jothi, Raja ;
Resnick, Michael A. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (15) :7286-7301
[25]   GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers [J].
Mermel, Craig H. ;
Schumacher, Steven E. ;
Hill, Barbara ;
Meyerson, Matthew L. ;
Beroukhim, Rameen ;
Getz, Gad .
GENOME BIOLOGY, 2011, 12 (04)
[26]   Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis [J].
Nikulenkov, F. ;
Spinnler, C. ;
Li, H. ;
Tonelli, C. ;
Shi, Y. ;
Turunen, M. ;
Kivioja, T. ;
Ignatiev, I. ;
Kel, A. ;
Taipale, J. ;
Selivanova, G. .
CELL DEATH AND DIFFERENTIATION, 2012, 19 (12) :1992-2002
[27]  
Riemenschneider MJ, 1999, CANCER RES, V59, P6091
[28]   Characterization of the p53 Cistrome - DNA Binding Cooperativity Dissects p53′s Tumor Suppressor Functions [J].
Schlereth, Katharina ;
Heyl, Charlotte ;
Krampitz, Anna-Maria ;
Mernberger, Marco ;
Finkernagel, Florian ;
Scharfe, Maren ;
Jarek, Michael ;
Leich, Ellen ;
Rosenwald, Andreas ;
Stiewe, Thorsten .
PLOS GENETICS, 2013, 9 (08)
[29]   Reassessment of the TP53 mutation database in human disease by data mining with a library of TP53 missense mutations [J].
Soussi, T ;
Kato, S ;
Levy, PP ;
Ishioka, C .
HUMAN MUTATION, 2005, 25 (01) :6-17
[30]  
Sullivan KD, 2012, NAT CHEM BIOL, V8, P646, DOI [10.1038/NCHEMBIO.965, 10.1038/nchembio.965]