Identification of a core TP53 transcriptional program with highly distributed tumor suppressive activity

被引:106
作者
Andrysik, Zdenek [1 ,2 ,3 ]
Galbraith, Matthew D. [1 ,2 ,3 ]
Guarnieri, Anna L. [1 ,2 ,3 ]
Zaccara, Sara [4 ]
Sullivan, Kelly D. [1 ,2 ,3 ]
Pandey, Ahwan [1 ,2 ,3 ]
MacBeth, Morgan [1 ,2 ,3 ]
Inga, Alberto [4 ]
Espinosa, Joaquin M. [1 ,2 ,3 ,5 ]
机构
[1] Univ Colorado, Linda Crn Inst Syndrome, Anschutz Med Campus, Aurora, CO 80045 USA
[2] Univ Colorado, Dept Pharmacol, Anschutz Med Campus, Aurora, CO 80045 USA
[3] Univ Colorado, Dept Mol Cellular & Dev Biol, Boulder, CO 80203 USA
[4] Univ Trento, Ctr Integrat Biol CIBIO, I-38123 Trento, TN, Italy
[5] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
EMBRYONIC STEM-CELLS; P53 TARGET GENES; DNA-DAMAGE; MDM2; AMPLIFICATION; IN-VIVO; CANCER; GENOME; ACTIVATION; MUTATION; BINDING;
D O I
10.1101/gr.220533.117
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The tumor suppressor TP53 is the most frequently mutated gene product in human cancer. Close to half of all solid tumors carry inactivating mutations in the TP53 gene, while in the remaining cases, TP53 activity is abrogated by other oncogenic events, such as hyperactivation of its endogenous repressors MDM2 or MDM4. Despite identification of hundreds of genes regulated by this transcription factor, it remains unclear which direct target genes and downstream pathways are essential for the tumor suppressive function of TP53. We set out to address this problem by generating multiple genomic data sets for three different cancer cell lines, allowing the identification of distinct sets of TP53-regulated genes, from early transcriptional targets through to late targets controlled at the translational level. We found that although TP53 elicits vastly divergent signaling cascades across cell lines, it directly activates a core transcriptional program of similar to 100 genes with diverse biological functions, regardless of cell type or cellular response to TP53 activation. This core program is associated with high-occupancy TP53 enhancers, high levels of paused RNA polymerases, and accessible chromatin. Interestingly, two different shRNA screens failed to identify a single TP53 target gene required for the anti-proliferative effects of TP53 during pharmacological activation in vitro. Furthermore, bioinformatics analysis of thousands of cancer genomes revealed that none of these core target genes are frequently inactivated in tumors expressing wild-type TP53. These results support the hypothesis that TP53 activates a genetically robust transcriptional program with highly distributed tumor suppressive functions acting in diverse cellular contexts.
引用
收藏
页码:1645 / 1657
页数:13
相关论文
共 44 条
[1]   Immediate mediators of the inflammatory response are poised for gene activation through RNA polymerase II stalling [J].
Adelman, Karen ;
Kennedy, Megan A. ;
Nechaev, Sergei ;
Gilchrist, Daniel A. ;
Muse, Ginger W. ;
Chinenov, Yurii ;
Rogatsky, Inez .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (43) :18207-18212
[2]   Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms [J].
Allen, Mary Ann ;
Andrysik, Zdenek ;
Dengler, Veronica L. ;
Mellert, Hestia S. ;
Guarnieri, Anna ;
Freeman, Justin A. ;
Sullivan, Kelly D. ;
Galbraith, Matthew D. ;
Luo, Xin ;
Kraus, W. Lee ;
Dowell, Robin D. ;
Espinosa, Joaquin M. .
ELIFE, 2014, 3
[3]   Distinct p53 Transcriptional Programs Dictate Acute DNA-Damage Responses and Tumor Suppression [J].
Brady, Colleen A. ;
Jiang, Dadi ;
Mello, Stephano S. ;
Johnson, Thomas M. ;
Jarvis, Lesley A. ;
Kozak, Margaret M. ;
Broz, Daniela Kenzelmann ;
Basak, Shashwati ;
Park, Eunice J. ;
McLaughlin, Margaret E. ;
Karnezis, Anthony N. ;
Attardi, Laura D. .
CELL, 2011, 145 (04) :571-583
[4]   Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses [J].
Broz, Daniela Kenzelmann ;
Mello, Stephano Spano ;
Bieging, Kathryn T. ;
Jiang, Dadi ;
Dusek, Rachel L. ;
Brady, Colleen A. ;
Sidow, Arend ;
Attardi, Laura D. .
GENES & DEVELOPMENT, 2013, 27 (09) :1016-1031
[5]   An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors [J].
Brummelkamp, TR ;
Fabius, AWM ;
Mullenders, J ;
Madiredjo, M ;
Velds, A ;
Kerkhoven, RM ;
Bernards, R ;
Beijersbergen, RL .
NATURE CHEMICAL BIOLOGY, 2006, 2 (04) :202-206
[6]   WAF1, A POTENTIAL MEDIATOR OF P53 TUMOR SUPPRESSION [J].
ELDEIRY, WS ;
TOKINO, T ;
VELCULESCU, VE ;
LEVY, DB ;
PARSONS, R ;
TRENT, JM ;
LIN, D ;
MERCER, WE ;
KINZLER, KW ;
VOGELSTEIN, B .
CELL, 1993, 75 (04) :817-825
[7]   Census and evaluation of p53 target genes [J].
Fischer, M. .
ONCOGENE, 2017, 36 (28) :3943-3956
[8]   The transcription factor p53: Not a repressor, solely an activator [J].
Fischer, Martin ;
Steiner, Lydia ;
Engeland, Kurt .
CELL CYCLE, 2014, 13 (19) :3037-3058
[9]   Mutant p53: one name, many proteins [J].
Freed-Pastor, William A. ;
Prives, Carol .
GENES & DEVELOPMENT, 2012, 26 (12) :1268-1286
[10]   HIF1A Employs CDK8-Mediator to Stimulate RNAPII Elongation in Response to Hypoxia [J].
Galbraith, Matthew D. ;
Allen, Mary A. ;
Bensard, Claire L. ;
Wang, Xiaoxing ;
Schwinn, Marie K. ;
Qin, Bo ;
Long, Henry W. ;
Daniels, Danette L. ;
Hahn, William C. ;
Dowell, Robin D. ;
Espinosa, Joaquin M. .
CELL, 2013, 153 (06) :1327-1339