Two collaborative filtering recommender systems based on sparse dictionary coding

被引:3
|
作者
Kartoglu, Ismail Emre [1 ]
Spratling, Michael W. [1 ]
机构
[1] Kings Coll London, Dept Informat, 338-346 Goswell Rd, London EC1V 7LQ, England
关键词
Recommender systems; Algorithms; Sparse coding; Evaluation; MATRIX FACTORIZATION; REPRESENTATIONS;
D O I
10.1007/s10115-018-1157-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes two types of recommender systems based on sparse dictionary coding. Firstly, a novel predictive recommender system that attempts to predict a user's future rating of a specific item. Secondly, a top-n recommender system which finds a list of items predicted to be most relevant for a given user. The proposed methods are assessed using a variety of different metrics and are shown to be competitive with existing collaborative filtering recommender systems. Specifically, the sparse dictionary-based predictive recommender has advantages over existing methods in terms of a lower computational cost and not requiring parameter tuning. The sparse dictionary-based top-n recommender system has advantages over existing methods in terms of the accuracy of the predictions it makes and not requiring parameter tuning. An open-source software implemented and used for the evaluation in this paper is also provided for reproducibility.
引用
收藏
页码:709 / 720
页数:12
相关论文
共 50 条
  • [21] Incorporating Fuzzy Trust in Collaborative Filtering Based Recommender Systems
    Kant, Vibhor
    Bharadwaj, Kamal K.
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, PT I, 2011, 7076 : 433 - 440
  • [22] A new similarity measure for collaborative filtering based recommender systems
    Gazdar, Achraf
    Hidri, Lotfi
    KNOWLEDGE-BASED SYSTEMS, 2020, 188
  • [23] Collaborative filtering-based recommender systems by effective trust
    Faridani V.
    Jalali M.
    Jahan M.V.
    Jalali, Mehrdad (jalali@mshdiau.ac.ir), 1600, Springer Science and Business Media Deutschland GmbH (03): : 297 - 307
  • [24] Diversity Balancing for Two-Stage Collaborative Filtering in Recommender Systems
    Zhang, Liang
    Wei, Quanshen
    Zhang, Lei
    Wang, Baojiao
    Ho, Wen-Hsien
    APPLIED SCIENCES-BASEL, 2020, 10 (04):
  • [25] Effects of Data Sparsity on Recommender Systems based on Collaborative Filtering
    Guedes da Silva, Joao Felipe
    de Moura, Natanael Nunes, Jr.
    Caloba, Luiz Pereira
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [26] Deep learning techniques for recommender systems based on collaborative filtering
    Martins, Guilherme Brandao
    Papa, Joao Paulo
    Adeli, Hojjat
    EXPERT SYSTEMS, 2020, 37 (06)
  • [27] Deep Transfer Collaborative Filtering for Recommender Systems
    Gai, Sibo
    Zhao, Feng
    Kang, Yachen
    Chen, Zhengyu
    Wang, Donglin
    Tang, Ao
    PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2019, 11672 : 515 - 528
  • [28] A Hybrid Approach with Collaborative Filtering for Recommender Systems
    Badaro, Gilbert
    Hajj, Hazem
    El-Hajj, Wassim
    Nachman, Lama
    2013 9TH INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), 2013, : 349 - 354
  • [29] Neural embedding collaborative filtering for recommender systems
    Tianlin Huang
    Defu Zhang
    Lvqing Bi
    Neural Computing and Applications, 2020, 32 : 17043 - 17057
  • [30] Neural embedding collaborative filtering for recommender systems
    Huang, Tianlin
    Zhang, Defu
    Bi, Lvqing
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (22): : 17043 - 17057