Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors

被引:909
|
作者
Abadie, J. [1 ]
Abbott, B. P. [1 ]
Abbott, R. [1 ]
Abernathy, M. [2 ]
Accadia, T. [3 ]
Acerneseac, F. [4 ,5 ]
Adams, C. [6 ]
Adhikari, R. [1 ]
Ajith, P. [1 ]
Allen, B. [7 ,8 ]
Allen, G. [9 ]
Ceron, E. Amador [8 ]
Amin, R. S. [10 ]
Anderson, S. B. [1 ]
Anderson, W. G. [21 ]
Antonuccia, F. [11 ]
Aoudiaa, S. [13 ]
Arain, M. A. [15 ]
Araya, M. [1 ]
Aronsson, M. [1 ]
Arun, K. G.
Aso, Y. [1 ]
Aston, S. [18 ]
Astonea, P. [11 ]
Atkinson, D. E. [19 ]
Aufmuth, P. [20 ]
Aulbert, C. [7 ]
Babak, S. [21 ]
Baker, P. [22 ]
Ballardin, G. [23 ]
Ballmer, S. [1 ]
Barker, D. [19 ]
Barnum, S. [24 ]
Baroneac, F. [4 ,5 ]
Barr, B. [2 ]
Barriga, P. [25 ]
Barsotti, L. [26 ]
Barsuglia, M. [27 ]
Barton, M. A. [19 ]
Bartos, I. [28 ]
Bassiri, R. [2 ]
Bastarrika, M. [2 ]
Bauchrowitz, J. [7 ]
Bauera, Th S. [29 ]
Behnke, B. [21 ]
Beker, M. G. [29 ]
Benacquista, M. [31 ]
Bertolini, A. [1 ,7 ,42 ]
Betzwieser, J. [1 ]
Beveridge, N. [2 ]
机构
[1] CALTECH, LIGO, Pasadena, CA 91125 USA
[2] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland
[3] Univ Savoie, Lab Annecy Le Vieux Phys Particules LAPP, IN2P3, CNRS, F-74941 Annecy Le Vieux, France
[4] Univ Naples Federico II, Sez Napolia, I-80126 Naples, Italy
[5] Complesso Univ Monte S Angelo, I-80126 Naples, Italy
[6] LIGO, Livingston Observ, Livingston, LA 70754 USA
[7] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany
[8] Univ Wisconsin, Milwaukee, WI 53201 USA
[9] Stanford Univ, Stanford, CA 94305 USA
[10] Louisiana State Univ, Baton Rouge, LA 70803 USA
[11] INFN, Sez Roma, I-00185 Rome, Italy
[12] Univ Roma La Sapienza, I-00185 Rome, Italy
[13] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, F-06304 Nice, France
[14] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France
[15] Univ Florida, Gainesville, FL 32611 USA
[16] Univ Paris Sud, LAL, IN2P3, CNRS, F-91898 Orsay, France
[17] CNRS, ESPCI, F-75005 Paris, France
[18] Univ Birmingham, Birmingham B15 2TT, W Midlands, England
[19] LIGO, Hanford Observ, Richland, WA 99352 USA
[20] Leibniz Univ Hannover, D-30167 Hannover, Germany
[21] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany
[22] Montana State Univ, Bozeman, MT 59717 USA
[23] European Gravitat Observ, I-56021 Cascina, Pi, Italy
[24] Sonoma State Univ, Rohnert Pk, CA 94928 USA
[25] Univ Western Australia, Crawley, WA 6009, Australia
[26] MIT, LIGO, Cambridge, MA 02139 USA
[27] Univ Denis Diderot Paris 7, APC, CNRS, UMR7164 IN2P3,Observ Paris, Paris, France
[28] Columbia Univ, New York, NY 10027 USA
[29] NIKHEF H, Natl Inst Subat Phys, NL-1009 DB Amsterdam, Netherlands
[30] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands
[31] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA
[32] San Jose State Univ, San Jose, CA 95192 USA
[33] Univ Pisa, I-56127 Pisa, Italy
[34] INFN, Sez Pisa, I-56127 Pisa, Italy
[35] Univ Siena, I-53100 Siena, Italy
[36] Moscow MV Lomonosov State Univ, Moscow 119992, Russia
[37] Univ Massachusetts, Amherst, MA 01003 USA
[38] Penn State Univ, University Pk, PA 16802 USA
[39] Washington State Univ, Pullman, WA 99164 USA
[40] INFN, Sez Perugia, I-6123 Perugia, Italy
[41] Univ Perugia, I-6123 Perugia, Italy
[42] CALTECH, CaRT, Pasadena, CA 91125 USA
[43] Univ Oregon, Eugene, OR 97403 USA
[44] Syracuse Univ, Syracuse, NY 13244 USA
[45] IM PAN, PL-00956 Warsaw, Poland
[46] Univ Warsaw, PL-00681 Warsaw, Poland
[47] Univ Warsaw, Astron Observ, PL-00681 Warsaw, Poland
[48] CAMK PAN, PL-00716 Warsaw, Poland
[49] Bialystok Univ, PL-15424 Bialystok, Poland
[50] IPJ, PL-05400 Otwock, Poland
基金
美国国家科学基金会; 澳大利亚研究理事会; 美国国家航空航天局;
关键词
GAMMA-RAY BURSTS; MASS BLACK-HOLES; CONSTRAINING POPULATION; SYNTHESIS MODELS; MERGERS; EVOLUTION; RADIATION; GALAXIES; CLUSTERS; PULSARS;
D O I
10.1088/0264-9381/27/17/173001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. Themost confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr(-1) per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 Myr(-1) MWEG(-1) to 1000 Myr(-1) MWEG(-1) (Kalogera et al 2004 Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 ( erratum)). We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO-Virgo interferometers, with a plausible range between 2 x 10(-4) and 0.2 per year. The likely binary neutron-star detection rate for the Advanced LIGO-Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Compact binary coalescences in the band of ground-based gravitational-wave detectors
    Mandel, Ilya
    O'Shaughnessy, Richard
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (11)
  • [2] Ground-based gravitational-wave detectors
    Kuroda, Kazuaki
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2015, 24 (14):
  • [3] Prospects for gravitational-wave polarization tests from compact binary mergers with future ground-based detectors
    Takeda, Hiroki
    Nishizawa, Atsushi
    Nagano, Koji
    Michimura, Yuta
    Komori, Kentaro
    Ando, Masaki
    Hayama, Kazuhiro
    PHYSICAL REVIEW D, 2019, 100 (04)
  • [4] Accessibility of the gravitational-wave background due to binary coalescences to second and third generation gravitational-wave detectors
    Wu, C.
    Mandic, V.
    Regimbau, T.
    PHYSICAL REVIEW D, 2012, 85 (10):
  • [5] Gravitational-wave observations from ground-based detectors
    Li, Tjonnie G. F.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2017, 32 (28-29):
  • [6] Listening to the Universe with next generation ground-based gravitational-wave detectors
    Borhanian, Ssohrab
    Sathyaprakash, B. S.
    PHYSICAL REVIEW D, 2024, 110 (08)
  • [7] GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Afrough, M.
    Agarwal, B.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allen, G.
    Allocca, A.
    Altin, P. A.
    Amato, A.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Angelova, S. V.
    Antier, S.
    Appert, S.
    Arai, K.
    Araya, M. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Atallah, D. V.
    Aufmuth, P.
    Aulbert, C.
    AultONeal, K.
    Austin, C.
    Avila-Alvarez, A.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    PHYSICAL REVIEW LETTERS, 2018, 120 (09)
  • [8] Importance of eccentricities in parameter estimation of compact binary inspirals with decihertz gravitational-wave detectors
    Choi, Han Gil
    Yang, Tao
    Lee, Hyung Mok
    PHYSICAL REVIEW D, 2024, 110 (02)
  • [9] Effect of metallicity on the gravitational-wave signal from the cosmological population of compact binary coalescences
    Kowalska-Leszczynska, I.
    Regimbau, T.
    Bulik, T.
    Dominik, M.
    Belczynski, K.
    ASTRONOMY & ASTROPHYSICS, 2015, 574
  • [10] Probing ultralight dark matter with future ground-based gravitational-wave detectors
    Yuan, Chen
    Brito, Richard
    Cardoso, Vitor
    PHYSICAL REVIEW D, 2021, 104 (04)