Weak solutions of quasilinear problems with nonlinear boundary condition

被引:39
作者
Cîrstea, F
Motreanu, D
Radulescu, V [1 ]
机构
[1] Univ Craiova, Dept Math, Craiova 1100, Romania
[2] Univ AI Cuza, Dept Math, Iasi 6600, Romania
关键词
weak solution; weighted Sobolev space; unbounded domain; quasilinear eigenvalue problem;
D O I
10.1016/S0362-546X(99)00224-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The growing attention for the study of the p-Laplacian operator Δp in the last few decades is motivated by the fact that it arises in various applications. Weak solutions for a quasilinear problems with nonlinear boundary condition are presented. A nonlinear elliptic boundary value problem: -div(a(x)|▽u|p-2▽u) = λ(1+|x|)α(1)|u|p-2u +(1+|x|)α(2)|u|q-2u in Ω, a(x)|▽u|p-2▽u·n+b(x) ·|u|p-2u = g(x,u) on Γ. It is assume throughout that 1<p<N, p<q<p* = Np/(N-p), -N<α1<-p, -N<α2<q·(N-p)/p-N, 0<a0≤a∈L∞(Ω) and b:Γ→R is a continuous function satisfying c/(1+|x|)p-1≤b(x) ≤C/(1+|x|)p-1, for constants 0<c≤C. Some computations that prove these equations are presented.
引用
收藏
页码:623 / 636
页数:14
相关论文
共 12 条
[1]  
Allegretto W., 1995, FUNKC EKVACIOJ-SER I, V38, P233
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
ANANE A, 1987, CR ACAD SCI I-MATH, V305, P725
[4]  
AZORERO JPG, 1987, COMMUN PART DIFF EQ, V12, P1389
[5]  
DIAZ JI, 1986, ELLIPTIC EQUATIONS R, V106
[6]   NONLINEAR EIGENVALUE PROBLEM FOR P-LAPLACIAN IN R(N) [J].
DRABEK, P .
MATHEMATISCHE NACHRICHTEN, 1995, 173 :131-139
[7]  
KAWOHL B, 1990, J REINE ANGEW MATH, V410, P1
[8]  
Motreanu D., 1997, Mathematica Slovaca, V47, P463
[9]  
PELISSIER MC, 1974, CR ACAD SCI A MATH, V279, P531
[10]  
Pfluger K., 1998, ANALYSIS-UK, V18, P65