Image-Based Process Monitoring Using Deep Belief Networks

被引:4
作者
Lyu, Yuting [1 ]
Chen, Junghui [2 ]
Song, Zhihuan [1 ]
机构
[1] Zhejiang Univ, Dept Control Sci & Engn, Inst Ind Proc Control, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
[2] Chung Yuan Christian Univ, Dept Chem Engn, Chungli, Taiwan
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 18期
关键词
Process Monitoring; Deep Belief Network; Deep Learning; Fault Detection; Process Images;
D O I
10.1016/j.ifacol.2018.09.285
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the advances in optical sensing and image capture systems, process images certainly offer new perspectives to process monitoring. Compared to the process data collected by traditional sensors at local regions, process images, which can capture more significant variations in the whole space, enhance the monitoring performance in data-driven monitoring methods. In this paper, a popular deep learning method, namely deep belief network (DBN), is applied to effectively extract useful features from the images. Meanwhile, a new statistic is developed for the DBN model, which integrates feature extraction and fault detection into one model rather than separately accomplish them. The effectiveness of the proposed DBN based monitoring method is demonstrated in a real combustion system. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:115 / 120
页数:6
相关论文
共 50 条
  • [31] Image-based tool condition monitoring based on convolution neural network in turning process
    Kou, Rui
    Lian, Shi-wei
    Xie, Nan
    Lu, Bei-er
    Liu, Xue-mei
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 119 (5-6) : 3279 - 3291
  • [32] Image-based tool condition monitoring based on convolution neural network in turning process
    Rui Kou
    Shi-wei Lian
    Nan Xie
    Bei-er Lu
    Xue-mei Liu
    The International Journal of Advanced Manufacturing Technology, 2022, 119 : 3279 - 3291
  • [33] Deep Convolutional Generative Adversarial Networks in Image-Based Android Malware Detection
    Mercaldo, Francesco
    Martinelli, Fabio
    Santone, Antonella
    COMPUTERS, 2024, 13 (06)
  • [34] The Fault Detection of Aero-engine Sensor Based on Deep Belief Networks
    Guo Chuang
    Zheng Xiao-fei
    Yao-bin
    PROCEEDINGS OF THE 2016 7TH INTERNATIONAL CONFERENCE ON MECHATRONICS, CONTROL AND MATERIALS (ICMCM 2016), 2016, 104 : 85 - 92
  • [35] Image-based failure detection for material extrusion process using a convolutional neural network
    Hyungjung Kim
    Hyunsu Lee
    Ji-Soo Kim
    Sung-Hoon Ahn
    The International Journal of Advanced Manufacturing Technology, 2020, 111 : 1291 - 1302
  • [36] Image-based failure detection for material extrusion process using a convolutional neural network
    Kim, Hyungjung
    Lee, Hyunsu
    Kim, Ji-Soo
    Ahn, Sung-Hoon
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 111 (5-6) : 1291 - 1302
  • [37] SEQUENTIAL DEEP BELIEF NETWORKS
    Andrew, Galen
    Bilmes, Jeff
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 4265 - 4268
  • [38] IMAGE-BASED SEAT BELT FASTNESS DETECTION USING DEEP LEARNING
    Kapdi, Rupal A.
    Khanpara, Pimal
    Modi, Rohan
    Gupta, Manish
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2022, 23 (04): : 441 - 455
  • [39] Image-based nutrient estimation for Chinese dishes using deep learning
    Ma, Peihua
    Lau, Chun Pong
    Yu, Ning
    Li, An
    Liu, Ping
    Wang, Qin
    Sheng, Jiping
    FOOD RESEARCH INTERNATIONAL, 2021, 147
  • [40] Using deep transfer learning for image-based plant disease identification
    Chen, Junde
    Chen, Jinxiu
    Zhang, Defu
    Sun, Yuandong
    Nanehkaran, Y. A.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 173