A Graph-Based Semi-supervised Algorithm for Protein Function Prediction from Interaction Maps

被引:10
|
作者
Freschi, Valerio [1 ]
机构
[1] Univ Urbino, ISTI, I-61029 Urbino, Italy
来源
关键词
INTERACTION NETWORKS;
D O I
10.1007/978-3-642-11169-3_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Protein function prediction represents a fundamental challenge in bioinformatics. The increasing availability of proteomics network data has enabled the development of several approaches that exploit the information encoded in networks in order to infer protein function. In this paper we introduce a new algorithm based on the concept of topological overlap between nodes of the graph, which addresses the problem of the classification of partially labeled protein interaction networks. The proposed approach is tested on the yeast interaction map and compared with two current state-of-the-art algorithms. Cross-validation experiments provide evidence that the proposed method represents a competitive alternative in a wide range of experimental conditions and also that, in many cases, it provides enhanced predictive accuracy.
引用
收藏
页码:249 / 258
页数:10
相关论文
共 50 条
  • [1] Graph-based semi-supervised learning
    Zhang, Changshui
    Wang, Fei
    ARTIFICIAL LIFE AND ROBOTICS, 2009, 14 (04) : 445 - 448
  • [2] Graph-based semi-supervised learning
    Subramanya, Amarnag
    Talukdar, Partha Pratim
    Synthesis Lectures on Artificial Intelligence and Machine Learning, 2014, 29 : 1 - 126
  • [3] Graph-based semi-supervised learning
    Changshui Zhang
    Fei Wang
    Artificial Life and Robotics, 2009, 14 (4) : 445 - 448
  • [4] Toward graph-based semi-supervised face beauty prediction
    Dornaika, Fadi
    Wang, Kunwei
    Arganda-Carreras, Ignacio
    Elorza, Anne
    Moujahid, Abdelmalik
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 142
  • [5] Fairness in graph-based semi-supervised learning
    Tao Zhang
    Tianqing Zhu
    Mengde Han
    Fengwen Chen
    Jing Li
    Wanlei Zhou
    Philip S Yu
    Knowledge and Information Systems, 2023, 65 : 543 - 570
  • [6] On Consistency of Graph-based Semi-supervised Learning
    Du, Chengan
    Zhao, Yunpeng
    Wang, Feng
    2019 39TH IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2019), 2019, : 483 - 491
  • [7] Graph-based semi-supervised relation extraction
    Chen, Jin-Xiu
    Ji, Dong-Hong
    Ruan Jian Xue Bao/Journal of Software, 2008, 19 (11): : 2843 - 2852
  • [8] A graph-based semi-supervised learning algorithm for web page classification
    Liu, Rong
    Zhou, Jianzhong
    Liu, Ming
    ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 2, 2006, : 856 - +
  • [9] Fairness in graph-based semi-supervised learning
    Zhang, Tao
    Zhu, Tianqing
    Han, Mengde
    Chen, Fengwen
    Li, Jing
    Zhou, Wanlei
    Yu, Philip S.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (02) : 543 - 570
  • [10] Analysis of Graph-based Semi-supervised Regression
    Luo, Jin
    Chen, Hong
    Tang, Yi
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS, 2008, : 111 - +