Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally: Feasibility, economy, opportunities and challenges

被引:279
|
作者
Hart, Olga E. [1 ]
Halden, Rolf U. [1 ,2 ,3 ]
机构
[1] Arizona State Univ, Biodesign Ctr Environm Hlth Engn, Biodesign Inst, 1001 S McAllister Ave, Tempe, AZ 85287 USA
[2] Arizona State Univ Fdn, OneWaterOneHlth, 1001 S McAllister Ave, Tempe, AZ 85287 USA
[3] AquaVitas LLC, 9260 E Raintree Dr,Ste 140, Scottsdale, AZ 85260 USA
关键词
Wastewater-based epidemiology; Modeling; Global health; Coronavirus; CONSUMPTION; CORONAVIRUSES; SURVIVAL; TRACKING;
D O I
10.1016/j.scitotenv.2020.138875
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the economic and practical limits of medical screening for SARS-CoV-2/COVID-19 coming sharply into focus worldwide, scientists are turning now to wastewater-based epidemiology (WBE) as a potential tool for assessing and managing the pandemic. We employed computational analysis and modeling to examine the feasibility, economy, opportunities and challenges of enumerating active coronavirus infections locally and globally using WBE. Depending on local conditions, detection in community wastewater of one symptomatic/asymptomatic infected case per 100 to 2,000,000 non-infected people is theoretically feasible, with some practical successes now being reported from around the world. Computer simulations for past, present and emerging epidemic hotspots (e.g., Wuhan, Milan, Madrid, New York City, Teheran, Seattle, Detroit and New Orleans) identified temperature, average in-sewer travel time and per-capita water use as key variables. WBE surveillance of populations is shown to be orders of magnitude cheaper and faster than clinical screening, yet cannot fully replace it. Cost savings worldwide for one-time national surveillance campaigns are estimated to be in the million to billion US dollar range (US$), depending on a nation's population size and number of testing rounds conducted. For resource poor regions and nations, WBE may represent the only viable means of effective surveillance. Important limitations of WBE rest with its inability to identify individuals and to pinpoint their specific locations. Not compensating for temperature effects renders WBE data vulnerable to severe under-/over-estimation of infected cases. Effective surveillance may be envisioned as a two-step process in which WBE serves to identify and enumerate infected cases, where after clinical testing then serves to identify infected individuals in WBE-revealed hotspots. Data provided here demonstrate this approach to save money, be broadly applicable worldwide, and potentially aid in precision management of the pandemic, thereby helping to accelerate the global economic recovery that billions of people rely upon for their livelihoods. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Technical framework for wastewater-based epidemiology of SARS-CoV-2
    Wu, Jinyong
    Wang, Zizheng
    Lin, Yufei
    Zhang, Lihua
    Chen, Jing
    Li, Panyu
    Liu, Wenbin
    Wang, Yabo
    Yao, Changhong
    Yang, Kun
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 791
  • [2] Long-term SARS-CoV-2 surveillance in wastewater and estimation of COVID-19 cases: An application of wastewater-based epidemiology
    Shrestha, Sadhana
    Malla, Bikash
    Angga, Made Sandhyana
    Sthapit, Niva
    Raya, Sunayana
    Hirai, Soichiro
    Rahmani, Aulia Fajar
    Thakali, Ocean
    Haramoto, Eiji
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 896
  • [3] Wastewater-based epidemiology: A Brazilian SARS-COV-2 surveillance experience
    Bueno, Rodrigo de Freitas
    Mantovani Claro, Ieda Carolina
    Augusto, Matheus Ribeiro
    Alves Duran, Adriana Feliciano
    Bomediano Camillo, Livia de Moraes
    Cabral, Aline Diniz
    Sodre, Fernando Fabriz
    Silveira Brandao, Cristina Celia
    Vizzotto, Carla Simone
    Silveira, Rafaella
    Mendes, Geovana de Melo
    Arruda, Andrea Fernandes
    de Brito, Nubia Natalia
    Souza Machado, Bruna Aparecida
    Mendes Duarte, Gabriela Rodrigues
    Aguiar-Oliveira, Maria de Lourdes
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (05):
  • [4] A scoping review of global SARS-CoV-2 wastewater-based epidemiology in light of COVID-19 pandemic
    Rashid, Siti Aishah
    Rajendiran, Sakshaleni
    Nazakat, Raheel
    Sham, Noraishah Mohammad
    Hasni, Nurul Amalina Khairul
    Anasir, Mohd Ishtiaq
    Kamel, Khayri Azizi
    Robat, Rosnawati Muhamad
    HELIYON, 2024, 10 (09)
  • [5] Wastewater-based SARS-CoV-2 surveillance and sequencing
    Michie, Alice
    MICROBIOLOGY AUSTRALIA, 2024, 45 (01) : 8 - 12
  • [6] Wastewater-Based Epidemiology for Community Monitoring of SARS-CoV-2: Progress and Challenges
    Kumblathan, Teresa
    Liu, Yanming
    Uppal, Gursharan K.
    Hrudey, Steve E.
    Li, Xing-Fang
    ACS ENVIRONMENTAL AU, 2021, 1 (01): : 18 - 31
  • [7] SARS-CoV-2 shedding sources in wastewater and implications for wastewater-based epidemiology
    Li, Xuan
    Kulandaivelu, Jagadeeshkumar
    Guo, Ying
    Zhang, Shuxin
    Shi, Jiahua
    O'Brien, Jake
    Arora, Sudipti
    Kumar, Manish
    Sherchan, Samendra P.
    Honda, Ryo
    Jackson, Greg
    Luby, Stephen P.
    Jiang, Guangming
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 432
  • [8] Wastewater genomic sequencing for SARS-CoV-2 variants surveillance in wastewater-based epidemiology applications
    Xu, Xiaoqing
    Deng, Yu
    Ding, Jiahui
    Zheng, Xiawan
    Wang, Chunxiao
    Wang, Dou
    Liu, Lei
    Gu, Haogao
    Peiris, Malik
    Poon, Leo L. M.
    Zhang, Tong
    WATER RESEARCH, 2023, 244
  • [9] Surveillance of SARS-CoV-2 spread using wastewater-based epidemiology: Comprehensive study
    Hemalatha, Manupati
    Kiran, Uday
    Kuncha, Santosh Kumar
    Kopperi, Harishankar
    Gokulan, C. G.
    Mohan, S. Venkata
    Mishra, Rakesh K.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 768
  • [10] Uncertainties in estimating SARS-CoV-2 prevalence by wastewater-based epidemiology
    Li, Xuan
    Zhang, Shuxin
    Shi, Jiahua
    Luby, Stephen P.
    Jiang, Guangming
    CHEMICAL ENGINEERING JOURNAL, 2021, 415 (415)