What do medical students actually need to know about artificial intelligence?

被引:106
作者
McCoy, Liam G. [1 ,2 ]
Nagaraj, Sujay [1 ,3 ]
Morgado, Felipe [1 ,4 ]
Harish, Vinyas [1 ,2 ]
Das, Sunit [1 ,5 ]
Celi, Leo Anthony [6 ,7 ,8 ]
机构
[1] Univ Toronto, Fac Med, Med Sci Bldg,1 Kings Coll Cir, Toronto, ON M5S 1A8, Canada
[2] Univ Toronto, Dalla Lana Sch Publ Hlth, Inst Hlth Policy Management & Evaluat, 155 Coll St 4th Floor, Toronto, ON M5T 3M6, Canada
[3] Univ Toronto, Dept Comp Sci, 40 St George St,Room 4283, Toronto, ON M5S 2E4, Canada
[4] Univ Toronto, Dept Med Biophys, 101 Coll St,Suite 15-701, Toronto, ON M5G 1L7, Canada
[5] Univ Toronto, Ctr Eth, 15 Devonshire Pl, Toronto, ON M5S 1H8, Canada
[6] MIT, Inst Med Engn & Sci, 77 Massachusetts Ave,E25-505, Cambridge, MA 02139 USA
[7] Beth Israel Deaconess Med Ctr, Div Pulm Crit Care & Sleep Med, 330 Brookline Ave, Boston, MA 02215 USA
[8] Harvard TH Chan Sch Publ Hlth, Dept Biostat, 677 Huntington Ave, Boston, MA 02115 USA
关键词
EDUCATION;
D O I
10.1038/s41746-020-0294-7
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
With emerging innovations in artificial intelligence (AI) poised to substantially impact medical practice, interest in training current and future physicians about the technology is growing. Alongside comes the question of what, precisely, should medical students be taught. While competencies for the clinical usage of AI are broadly similar to those for any other novel technology, there are qualitative differences of critical importance to concerns regarding explainability, health equity, and data security. Drawing on experiences at the University of Toronto Faculty of Medicine and MIT Critical Data's "datathons", the authors advocate for a dual-focused approach: combining robust data science-focused additions to baseline health research curricula and extracurricular programs to cultivate leadership in this space.
引用
收藏
页数:3
相关论文
共 15 条
  • [1] A "datathon" model to support cross-disciplinary collaboration
    Aboab, Jerome
    Celi, Leo Anthony
    Charlton, Peter
    Feng, Mengling
    Ghassemi, Mohammad
    Marshall, Dominic C.
    Mayaud, Louis
    Naumann, Tristan
    McCague, Ned
    Paik, Kenneth E.
    Pollard, Tom J.
    Resche-Rigon, Matthieu
    Salciccioli, Justin D.
    Stone, David J.
    [J]. SCIENCE TRANSLATIONAL MEDICINE, 2016, 8 (333)
  • [2] Machine Learning and Health Care Disparities in Dermatology
    Adamson, Adewole S.
    Smith, Avery
    [J]. JAMA DERMATOLOGY, 2018, 154 (11) : 1247 - 1248
  • [3] [Anonymous], 2020, PD530 7 CLIN INF
  • [4] Graduate Medical Education: Its Role in Achieving a True Medical Education Continuum
    Aschenbrener, Carol A.
    Ast, Cori
    Kirch, Darrell G.
    [J]. ACADEMIC MEDICINE, 2015, 90 (09) : 1203 - 1209
  • [5] Treating health disparities with artificial intelligence
    Chen, Irene Y.
    Joshi, Shalmali
    Ghassemi, Marzyeh
    [J]. NATURE MEDICINE, 2020, 26 (01) : 16 - 17
  • [6] AI4People-An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations
    Floridi, Luciano
    Cowls, Josh
    Beltrametti, Monica
    Chatila, Raja
    Chazerand, Patrice
    Dignum, Virginia
    Luetge, Christoph
    Madelin, Robert
    Pagallo, Ugo
    Rossi, Francesca
    Schafer, Burkhard
    Valcke, Peggy
    Vayena, Effy
    [J]. MINDS AND MACHINES, 2018, 28 (04) : 689 - 707
  • [7] Computing for Medicine: Can We Prepare Medical Students for the Future?
    Law, Marcus
    Veinot, Paula
    Campbell, Jennifer
    Craig, Michelle
    Mylopoulos, Maria
    [J]. ACADEMIC MEDICINE, 2019, 94 (03) : 353 - 357
  • [8] The Leadership Case for Investing in Continuing Professional Development
    McMahon, Graham T.
    [J]. ACADEMIC MEDICINE, 2017, 92 (08) : 1075 - 1077
  • [9] MIT Critical Data, 2019, HST 953 COLL DAT SCI
  • [10] Parikh RB, 2019, JAMA