Machine Learning-Assisted Identification of Copolymer Microstructures Based on Microscopic Images

被引:9
作者
Xu, Han [1 ]
Ma, Sainan [1 ,2 ]
Hou, Yang [1 ]
Zhang, Qinghua [1 ]
Wang, Rui [3 ]
Luo, Yingwu [1 ]
Gao, Xiang [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Chem & Biol Engn, State Key Lab Chem Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Ningbo Res Inst, Ningbo 315100, Peoples R China
[3] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
polymer microstructure; glass transition temperature width; machine learning; small data set; transfer learning; interpretability; GRADIENT COPOLYMERS; PREDICTION; DESIGN;
D O I
10.1021/acsami.2c15311
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The microstructure of polymer materials is an important bridge between their molecular structure and macroproperties, which is of great significance to be effectively identified. With the increasing refinement of polymer material design, the microstructure of different polymer materials gradually converges, which is difficult to distinguish. In this study, the machine learning method is applied to recognize the microstructure. A highly accurate and interpretable model based on small experimental data sets has been completed by the methods of transfer learning and feature visualization, making the result of the model that can be explained from the perspective of physical chemistry. This work provides an idea for identifying microstructure and will help further promote intelligent polymer research and development.
引用
收藏
页码:47157 / 47166
页数:10
相关论文
共 50 条
  • [31] Machine learning-assisted global optimization of photonic devices
    Kudyshev, Zhaxylyk A.
    Kildishev, Alexander, V
    Shalaev, Vladimir M.
    Boltasseva, Alexandra
    NANOPHOTONICS, 2021, 10 (01) : 371 - 383
  • [32] Machine learning-assisted investigations toward polymer synthesis
    Zhang, Zexi
    Cai, Zhanxiang
    Zhang, Wenbin
    Lu, Hua
    Chen, Mao
    CHINESE SCIENCE BULLETIN-CHINESE, 2025, 70 (4-5): : 471 - 480
  • [33] Machine Learning-Assisted PAPR Reduction in Massive MIMO
    Kalinov, Aleksei
    Bychkov, Roman
    Ivanov, Andrey
    Osinsky, Alexander
    Yarotsky, Dmitry
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (03) : 537 - 541
  • [34] Novel Cocrystals of Vonoprazan: Machine Learning-Assisted Discovery
    Lee, Min-Jeong
    Kim, Ji-Yoon
    Kim, Paul
    Lee, In-Seo
    Mswahili, Medard E.
    Jeong, Young-Seob
    Choi, Guang J.
    PHARMACEUTICS, 2022, 14 (02)
  • [35] Machine Learning-Assisted System for Thyroid Nodule Diagnosis
    Zhang, Bin
    Tian, Jie
    Pei, Shufang
    Chen, Yubing
    He, Xin
    Dong, Yuhao
    Zhang, Lu
    Mo, Xiaokai
    Huang, Wenhui
    Cong, Shuzhen
    Zhang, Shuixing
    THYROID, 2019, 29 (06) : 858 - 867
  • [36] Opportunities and Challenges for Machine Learning-Assisted Enzyme Engineering
    Yang, Jason
    Li, Francesca-Zhoufan
    Arnold, Frances H.
    ACS CENTRAL SCIENCE, 2024, 10 (02) : 226 - 241
  • [37] Machine Learning-Assisted Beam Alignment for mmWave Systems
    Heng, Yuqiang
    Andrews, Jeffrey G.
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [38] Machine Learning-Assisted Beam Alignment for mmWave Systems
    Heng, Yuqiang
    Andrews, Jeffrey G.
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (04) : 1142 - 1155
  • [39] Transfer Learning-Assisted Inverse Modeling in Nanophotonics Based on Mixture Density Networks
    Cheng, Liang
    Singh, Prashant
    Ferranti, Francesco
    IEEE ACCESS, 2024, 12 : 55218 - 55224
  • [40] Machine learning-assisted prediction of mechanical properties in WC-based composites with multicomponent alloy binders
    Ren, Hui
    Wang, Kaiyue
    Xu, Kai
    Lou, Ming
    Kan, Gaohui
    Jia, Qingtao
    Li, Changheng
    Xiao, Xuelian
    Chang, Keke
    COMPOSITES PART B-ENGINEERING, 2025, 299