Vanishing viscosity limits for the degenerate lake equations with Navier boundary conditions

被引:2
作者
Jiu, Quansen [1 ]
Niu, Dongjuan [1 ]
Wu, Jiahong [2 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
基金
美国国家科学基金会;
关键词
GLOBAL WELL-POSEDNESS; STOKES EQUATIONS; SHALLOW-WATER; VARYING BOTTOM; INVISCID LIMIT; TOPOGRAPHY; UNIQUENESS; EXISTENCE; FLOW;
D O I
10.1088/0951-7715/25/3/641
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the vanishing viscosity limit of the two-dimensional degenerate viscous lake equations when the Navier slip conditions are prescribed on the impermeable boundary of a simply connected bounded regular domain. When the initial vorticity is in the Lebesgue space L-q with 2 < q <= infinity, we show that the degenerate viscous lake equations possess a unique global solution and the solution converges to a corresponding weak solution of the inviscid lake equations. In a special case when the vorticity is in L-infinity, an explicit convergence rate is obtained.
引用
收藏
页码:641 / 655
页数:15
相关论文
共 20 条
[1]  
[Anonymous], 1990, The Theory of Rotating Fluids
[2]  
[Anonymous], 1996, OXFORD LECT SERIES M
[3]   EXISTENCE AND UNIQUENESS OF SOLUTION TO BIDIMENSIONAL EULER EQUATION [J].
BARDOS, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 40 (03) :769-790
[4]   Global existence and uniqueness for the lake equations with vanishing topography: elliptic estimates for degenerate equations [J].
Bresch, Didier ;
Metivier, Guy .
NONLINEARITY, 2006, 19 (03) :591-610
[5]   Long-time shallow-water equations with a varying bottom [J].
Camassa, R ;
Holm, DD ;
Levermore, CD .
JOURNAL OF FLUID MECHANICS, 1997, 349 :173-189
[6]   Long-time effects of bottom topography in shallow water [J].
CAmassa, R ;
Holm, DD ;
Levermore, CD .
PHYSICA D, 1996, 98 (2-4) :258-286
[7]   FLOW OF NON-LIPSCHITZ VECTOR-FIELDS AND NAVIER-STOKES EQUATIONS [J].
CHEMIN, JY ;
LERNER, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (02) :314-328
[8]   On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions [J].
Clopeau, T ;
Mikelic, A ;
Robert, R .
NONLINEARITY, 1998, 11 (06) :1625-1636
[9]   Sharp Inviscid Limit Results under Navier Type Boundary Conditions. An Lp Theory [J].
da Veiga, H. Beirao ;
Crispo, F. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2010, 12 (03) :397-411
[10]   Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions [J].
Iftimie, Dragos ;
Sueur, Franck .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (01) :145-175