COD and nitrogen removal in facilitated transfer membrane-aerated biofilm reactor (FT-MABR)

被引:52
|
作者
Wei, Xin [1 ,2 ,3 ]
Li, Baoan [1 ,2 ,3 ]
Zhao, Song [1 ,2 ,3 ]
Qiang, Chengcheng [1 ,2 ,3 ]
Zhang, Hongyu [1 ,2 ,3 ]
Wang, Shichang [1 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Chem Engn Res Ctr, Tianjin 300072, Peoples R China
[2] Tianjin Univ, State Key Lab Chem Engn, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Tianjin Key Lab Membrane Sci & Desalinat Technol, Tianjin 300072, Peoples R China
关键词
Facilitated transfer; Membrane-aerated biofilm reactor (MABR); Feed flow velocity; Shortcut nitrogen removal; OXYGEN-TRANSFER CHARACTERISTICS; WASTE-WATER; COMMUNITY STRUCTURE; MASS-TRANSFER; HOLLOW-FIBER; PERFORMANCE; FLOW; BIOREACTOR; MODEL; STRATIFICATION;
D O I
10.1016/j.memsci.2011.10.038
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A facilitated transfer membrane-aerated biofilm reactor (FT-MABR) was designed to overcome feed flow short-circuiting and achieve facilitated mass transfer. In the FT-MABR, the flow velocity was uniform and the flow direction was almost perpendicular with the hollow fiber membranes. The effects of feed flow velocity on COD, ammonium and total nitrogen (TN) removals were investigated through a long-term process study. With the increase of flow velocity, resistance impact load capability and oxygen utilization efficiency of the FT-MABR were enhanced. Meanwhile, ammonium was removed preferentially compared with COD. Batch studies indicated that, at the feed flow velocity of 0.05 m/s, when COD/N ratios were 3, 5 and 7, the TN removal efficiency reached to 50.7%, 72.8% and 83.5%, respectively. The process study further illustrated that the increase of feed flow velocity significantly strengthened the accumulation of nitrite and TN removal in the FT-MABR. The FT-MABR is a feasible technology for the treatment of wastewater with low COD/TN ratio. The further research will focus on the effect of feed flow velocity on the biofilm structure and build a mathematical model based on microbial kinetics and hydrodynamics. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:257 / 264
页数:8
相关论文
共 50 条
  • [41] Influence of biofilm thickness on the removal of thirteen different organic micropollutants via a Membrane Aerated Biofilm Reactor (MABR)
    Sanchez-Huerta, C.
    Fortunato, L.
    Leiknes, T.
    Hong, P. -y.
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 432
  • [42] Evaluating the performance of an integrated membrane-aerated biofilm reactor (MABR) system for high-strength brewery wastewater treatment
    Tian, Hailong
    Zhang, Jisheng
    Zheng, Yifei
    Zheng, Guipeng
    Li, Yuanyuan
    Yan, Yingchun
    Li, Zhiwen
    Hui, Ming
    ENVIRONMENTAL SCIENCE-WATER RESEARCH & TECHNOLOGY, 2023, 9 (08) : 2053 - 2064
  • [43] Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aerated biofilm reactor
    Xiao Quan
    Kai Huang
    Mei Li
    Meichao Lan
    Baoan Li
    Frontiers of Environmental Science & Engineering, 2018, 12
  • [44] Bioremediation of Oil Containing Seawater by Membrane-Aerated Biofilm Reactor
    Li, Peng
    Zhang, Yunge
    Li, Mei
    Li, Baoan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (51) : 13009 - 13016
  • [45] High-rate nitrogen removal by partial nitritation/anammox with a single-stage membrane-aerated biofilm reactor
    Song, Zixuan
    Hao, Shiwei
    Zhang, Li
    Fan, Xuepeng
    Peng, Yongzhen
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 349
  • [46] Enhanced treatment of nitroaniline-containing wastewater by a membrane-aerated biofilm reactor: Simultaneous nitroaniline degradation and nitrogen removal
    Mei, Xiang
    Wang, Yihan
    Yang, Yang
    Xu, Lijie
    Wang, Yong
    Guo, Zhongwei
    Shen, Wentian
    Zhang, Zimiao
    Ma, Mengyuan
    Ding, Yang
    Xiao, Yanyan
    Yang, Xu
    Yin, Chengqi
    Guo, Wei
    Xu, Kang
    Wang, Chaofan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 248
  • [47] Carbon membrane-aerated biofilm reactor for synthetic wastewater treatment
    Huijun Liu
    Fenglin Yang
    Tonghua Wang
    Qiang Liu
    Shaowei Hu
    Bioprocess and Biosystems Engineering, 2007, 30 : 217 - 224
  • [48] Mixed pharmaceutical wastewater treatment by integrated membrane-aerated biofilm reactor (MABR) system - A pilot-scale study
    Wei, Xin
    Li, Baoan
    Zhao, Song
    Wang, Li
    Zhang, Hongyu
    Li, Chang
    Wang, Shichang
    BIORESOURCE TECHNOLOGY, 2012, 122 : 189 - 195
  • [49] Feasibility of a membrane-aerated biofilm reactor to achieve controllable nitrification
    Terada, A
    Yamamoto, T
    Igarashi, R
    Tsuneda, S
    Hirata, A
    BIOCHEMICAL ENGINEERING JOURNAL, 2006, 28 (02) : 123 - 130
  • [50] Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aerated biofilm reactor
    Quan, Xiao
    Huang, Kai
    Li, Mei
    Lan, Meichao
    Li, Baoan
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2018, 12 (06)