Control of chemical chaos through medium viscosity in a batch ferroin-catalysed Belousov-Zhabotinsky reaction

被引:23
作者
Budroni, Marcello A. [1 ]
Calabrese, Ilaria [2 ]
Miele, Ylenia [3 ]
Rustici, Mauro [1 ]
Marchettini, Nadia [4 ]
Rossi, Federico [3 ]
机构
[1] Univ Sassari, Dipartimento Chim & Farm, Sassari, Italy
[2] Ist Zooprofilatt Sperimentale Sicilia, Area Chim & Tecnol, Alimentari, Palermo, Italy
[3] Univ Salerno, Dept Chem & Biol A Zambelli, Salerno, Italy
[4] Univ Siena, DEEP Sci, Siena, Italy
关键词
COMPLEX TRANSIENT OSCILLATIONS; DODECYL-SULFATE MICELLES; DYNAMICS; SYSTEM; ELECTROLYTES; MECHANISM; FRONTS; FLOWS; WAVES;
D O I
10.1039/c7cp06601e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper we show that the active interplay of nonlinear kinetics and transport phenomena in a chemical oscillator can be exploited to induce and control chaos. To this aim we use as a model system the ferroin-catalysed Belousov-Zhabotinsky (BZ) oscillating reaction, which is known to evolve to characteristic chaotic transient dynamics when carried out under batch and unstirred conditions. In particular, chemical chaos was found to appear and disappear by following a Ruelle-Takens-Newhouse (RTN) scenario. Here we use medium viscosity as a bifurcation parameter to tune the reaction-diffusion-convection (RDC) interplay and force the reaction in a specific sequence of dynamical regimes: either (i) periodic -> quasi-periodic -> chaotic or (ii) periodic -> quasi-periodic or (iii) only periodic. The medium viscosity can be set by adding different amounts of surfactant (sodium dodecyl sulphate), known to have a little impact on the reaction mechanism, above its critical micelle concentration. Experimental results are supported by means of numerical simulations of a RDC model, which combines self-sustained oscillations to the related chemically-induced buoyancy convection.
引用
收藏
页码:32235 / 32241
页数:7
相关论文
共 50 条
  • [1] Thermal effects on the diffusive layer convection instability of an exothermic acid-base reaction front
    Almarcha, C.
    Trevelyan, P. M. J.
    Grosfils, P.
    De Wit, A.
    [J]. PHYSICAL REVIEW E, 2013, 88 (03):
  • [2] [Anonymous], 1993, CHEM CHAOS
  • [3] Belousov B.P., 1958, Sb. Ref. Radiat. Med, P145
  • [4] Spatiotemporal chaos arising from standing waves in a reaction-diffusion system with cross-diffusion
    Berenstein, Igal
    Beta, Carsten
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (03)
  • [5] The control of chaos: theory and applications
    Boccaletti, S
    Grebogi, C
    Lai, YC
    Mancini, H
    Maza, D
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (03): : 103 - 197
  • [6] Dissipative structures: From reaction-diffusion to chemo-hydrodynamic patterns
    Budroni, M. A.
    De Wit, A.
    [J]. CHAOS, 2017, 27 (10)
  • [7] Butterfly effect in a chemical oscillator
    Budroni, M. A.
    Wodlei, F.
    Rustici, M.
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2014, 35 (04)
  • [8] Dynamics due to combined buoyancy- and Marangoni-driven convective flows around autocatalytic fronts
    Budroni, M. A.
    Rongy, L.
    De Wit, A.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (42) : 14619 - 14629
  • [9] A Novel Mechanism for in Situ Nucleation of Spirals Controlled by the Interplay between Phase Fronts and Reaction-Diffusion Waves in an Oscillatory Medium
    Budroni, Marcello A.
    Rossi, Federico
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (17) : 9411 - 9417
  • [10] Ruelle-Takens-Newhouse scenario in reaction-diffusion-convection system
    Budroni, Marcello Antonio
    Masia, Marco
    Rustici, Mauro
    Marchettini, Nadia
    Volpert, Vitaly
    Cresto, Pier Carlo
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (11)