The Dirichlet problem for complex Monge-Ampere equations and regularity of the pluri-complex Green function

被引:72
作者
Guan, B [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
关键词
D O I
10.4310/CAG.1998.v6.n4.a3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:687 / 703
页数:17
相关论文
共 23 条
[1]   2 COUNTEREXAMPLES CONCERNING THE PLURI-COMPLEX GREEN-FUNCTION IN CN [J].
BEDFORD, E ;
DEMAILLY, JP .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1988, 37 (04) :865-867
[2]   DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPERE EQUATION [J].
BEDFORD, E ;
TAYLOR, BA .
INVENTIONES MATHEMATICAE, 1976, 37 (01) :1-44
[3]   VARIATIONAL PROPERTIES OF THE COMPLEX MONGE-AMPERE EQUATION .2. INTRINSIC NORMS [J].
BEDFORD, E ;
TAYLOR, BA .
AMERICAN JOURNAL OF MATHEMATICS, 1979, 101 (05) :1131-1166
[4]   VARIATIONAL PROPERTIES OF COMPLEX MONGE-AMPERE EQUATION .1. DIRICHLET PRINCIPLE [J].
BEDFORD, E ;
TAYLOR, BA .
DUKE MATHEMATICAL JOURNAL, 1978, 45 (02) :375-403
[5]  
BEDFORD E, 1979, INVENT MATH, V50, P129
[6]  
Bedford E., 1993, Math. Notes, V38, P48
[7]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .2. COMPLEX MONGE-AMPERE, AND UNIFORMLY ELLIPTIC, EQUATIONS [J].
CAFFARELLI, L ;
KOHN, JJ ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (02) :209-252
[8]   ON THE EXISTENCE OF A COMPLETE KAHLER METRIC ON NON-COMPACT COMPLEX-MANIFOLDS AND THE REGULARITY OF FEFFERMANS EQUATION [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (04) :507-544
[9]   MONGE-AMPERE MEASURES AND PLURIHARMONIC MEASURES [J].
DEMAILLY, JP .
MATHEMATISCHE ZEITSCHRIFT, 1987, 194 (04) :519-564
[10]  
EVANS LC, 1982, COMMUN PUR APPL MATH, V35, P333