Refined Segmentation R-CNN: A Two-Stage Convolutional Neural Network for Punctate White Matter Lesion Segmentation in Preterm Infants

被引:5
作者
Liu, Yalong [1 ]
Li, Jie [1 ]
Wang, Ying [1 ]
Wang, Miaomiao [2 ]
Li, Xianjun [2 ]
Jiao, Zhicheng [3 ]
Yang, Jian [2 ]
Gao, Xingbo [1 ]
机构
[1] Xidian Univ, Sch Elect Engn, Lab Video & Image Proc Syst, Xian 710071, Peoples R China
[2] Xi An Jiao Tong Univ, Affiliated Hosp 1, Dept Radiol, Xian 710061, Peoples R China
[3] Univ N Carolina, Chapel Hill, NC 27599 USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III | 2019年 / 11766卷
基金
中国国家自然科学基金;
关键词
Convolutional neural network; Preterm infants; Punctate White; Matter Lesion; Semantic segmentation;
D O I
10.1007/978-3-030-32248-9_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate segmentation of punctate white matter lesion (PWML) in infantile brains by an automatic algorithm can reduce the potential risk of postnatal development. How to segment PWML effectively has become one of the active topics in medical image segmentation in recent years. In this paper, we construct an efficient two-stage PWML semantic segmentation network based on the characteristics of the lesion, called refined segmentation R-CNN (RS R-CNN). We propose a heuristic RPN (H-RPN) which can utilize surrounding information around the PWML for heuristic segmentation. Also, we design a lightweight segmentation network to segment the lesion in a fast way. Densely connected conditional random field (DCRF) is used to optimize the segmentation results. We only use T1w MRIs to segment PWMLs. The result shows that the lesion of ordinary size or even pixel size can be well segmented by our model. The Dice similarity coefficient reaches 0.6616, the sensitivity is 0.7069, the specificity is 0.9997, and the Hausdorff distance is 52.9130. The proposed method outperforms the state-of-the-art algorithm. (The code of this paper is available on https://github.com/YalongLiu/Refined-Segmentation-RCNN).
引用
收藏
页码:193 / 201
页数:9
相关论文
共 16 条
[1]  
[Anonymous], 2012, ABS12105644
[2]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[3]   Stochastic process for white matter injury detection in preterm neonates [J].
Cheng, Irene ;
Miller, Steven P. ;
Duerden, Emma G. ;
Sun, Kaiyu ;
Chau, Vann ;
Adams, Elysia ;
Poskitt, Kenneth J. ;
Branson, Helen M. ;
Basu, Anup .
NEUROIMAGE-CLINICAL, 2015, 7 :622-630
[4]   White Matter Injury Detection in Neonatal MRI [J].
Cheng, Irene ;
Hajari, Nasim ;
Firouzmanesh, Amirhossein ;
Shen, Rui ;
Miller, Steven ;
Poskitt, Ken ;
Basu, Anup .
MEDICAL IMAGING 2013: COMPUTER-AIDED DIAGNOSIS, 2013, 8670
[5]  
Ghafoorian Mohsen, 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10435, P516, DOI 10.1007/978-3-319-66179-7_59
[6]  
He K., 2016, IEEE C COMPUT VIS PA, DOI [10.1007/978-3-319-46493-0_38, DOI 10.1007/978-3-319-46493-0_38, DOI 10.1109/CVPR.2016.90]
[7]  
He K., 2017, P IEEE INT C COMPUTE, P2961
[8]   Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation [J].
Kamnitsas, Konstantinos ;
Ledig, Christian ;
Newcombe, Virginia F. J. ;
Sirnpson, Joanna P. ;
Kane, Andrew D. ;
Menon, David K. ;
Rueckert, Daniel ;
Glocker, Ben .
MEDICAL IMAGE ANALYSIS, 2017, 36 :61-78
[9]   Different Patterns of Punctate White Matter Lesions in Serially Scanned Preterm Infants [J].
Kersbergen, Karina J. ;
Benders, Manon J. N. L. ;
Groenendaal, Floris ;
Koopman-Esseboom, Corine ;
Nievelstein, Rutger A. J. ;
van Haastert, Ingrid C. ;
de Vries, Linda S. .
PLOS ONE, 2014, 9 (10)
[10]   Characterization of Extensive Microstructural Variations Associated with Punctate White Matter Lesions in Preterm Neonates [J].
Li, X. ;
Gao, J. ;
Wang, M. ;
Zheng, J. ;
Li, Y. ;
Hui, E. S. ;
Wan, M. ;
Yang, J. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2017, 38 (06) :1228-1234