Anomaly Detection Using Autoencoders for Movement Prediction

被引:0
|
作者
Barbosa, L. J. L. [1 ]
Delis, A. L. [2 ]
Cotta, P. V. P. [1 ]
Silva, V. O. [1 ]
Araujo, M. D. C. [1 ]
Rocha, A. [1 ]
机构
[1] Univ Brasilia, Engn Biomed, Brasilia, DF, Brazil
[2] Med Biophys Ctr, Santiago De Cuba, Cuba
来源
XXVII BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2020 | 2022年
关键词
EMG; Variational autoencoder; Deep learning; Information;
D O I
10.1007/978-3-030-70601-2_239
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The smaller the time window, the faster the response of a prosthesis to the user's movement. However, very small windows have very little information, making it difficult to classify the surface electromyography signal (sEMG). This article presents the use of autoencoders for the detection of motion in real-time processing. For this purpose, a time window of 0.01 s window (i.e., ten samples per window). The difference between the number of peaks and the distance between them in the resulting latent space makes it possible to classify the moment when the patient starts to move. Through an autoencoder as an anomaly detector, it was possible to classify the beginning of the user's movement, thus managing to improve the classification in real-time.
引用
收藏
页码:1635 / 1640
页数:6
相关论文
共 50 条
  • [41] Verifying Autoencoders for Anomaly Detection in Predictive Maintenance
    Guidotti, Dario
    Pandolfo, Laura
    Pulina, Luca
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, IEA-AIE 2024, 2024, 14748 : 188 - 199
  • [42] Graph Autoencoders for Business Process Anomaly Detection
    Huo, Siyu
    Voelzer, Hagen
    Reddy, Prabhat
    Agarwal, Prerna
    Isahagian, Vatche
    Muthusamy, Vinod
    BUSINESS PROCESS MANAGEMENT (BPM 2021), 2021, 12875 : 417 - 433
  • [43] Hyperspectral Anomaly Detection With Robust Graph Autoencoders
    Fan, Ganghui
    Ma, Yong
    Mei, Xiaoguang
    Fan, Fan
    Huang, Jun
    Ma, Jiayi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [44] Lipschitz Continuous Autoencoders in Application to Anomaly Detection
    Kim, Young-Geun
    Kwon, Yongchan
    Chang, Hyunwoong
    Paik, Myunghee Cho
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2507 - 2516
  • [45] Embedding Anomaly Detection Autoencoders for Wind Turbines
    Conradi Hoffmann, Jose Luis
    Frohlich, Antonio Augusto
    2022 IEEE 27TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2022,
  • [46] Anomaly Detection with Autoencoders for Spectrum Sharing and Monitoring
    Tschimben, Stefan
    Gifford, Kevin
    2022 IEEE INTERNATIONAL WORKSHOP ON COMMUNICATIONS QUALITY AND RELIABILITY (IEEE CQR), 2022, : 37 - 42
  • [47] Autoencoders - A Comparative Analysis in the Realm of Anomaly Detection
    Schneider, Sarah
    Antensteiner, Doris
    Soukup, Daniel
    Scheutz, Matthias
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 1985 - 1991
  • [48] Autoencoders Without Reconstruction for Textural Anomaly Detection
    Adey, Philip A.
    Akcay, Samet
    Bordewich, Magnus J. R.
    Breckon, Toby P.
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [49] Ultrasound Anomaly Detection Based on Variational Autoencoders
    Milkovic, Fran
    Filipovic, Branimir
    Subasic, Marko
    Petkovic, Tomislav
    Loncaric, Sven
    Budimir, Marko
    PROCEEDINGS OF THE 12TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA 2021), 2021, : 225 - 229
  • [50] A CLOSER LOOK AT AUTOENCODERS FOR UNSUPERVISED ANOMALY DETECTION
    Oyedotun, Oyebade K.
    Aouada, Djamila
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3793 - 3797