Vapor-Liquid-Solid Growth and Optoelectronics of Gallium Sulfide van der Waals Nanowires

被引:34
|
作者
Sutter, Eli [1 ]
French, Jacob S. [2 ]
Sutter, Stephan [2 ]
Idrobo, Juan Carlos [3 ]
Sutter, Peter [2 ]
机构
[1] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA
[2] Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
nanowires; layered crystals; semiconductors; optoelectronics; photonics; ELECTRONIC-PROPERTIES; GAS; PHOTODETECTORS; MONOLAYER; CRYSTALS; FIELD;
D O I
10.1021/acsnano.0c01919
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanowires of layered van der Waals (vdW) crystals are of interest due to structural characteristics and emerging properties that have no equivalent in conventional 3D crystalline nanostructures. Here, vapor-liquid-solid growth, optoelectronics, and photonics of GaS vdW nanowires are studied. Electron microscopy and diffraction demonstrate the formation of high-quality layered nanostructures with different vdW layer orientation. GaS nanowires with vdW stacking perpendicular to the wire axis have ribbon-like morphologies with lengths up to 100 mu m and uniform width. Wires with axial layer stacking show tapered morphologies and a corrugated surface due to twinning between successive few-layer GaS sheets. Layered GaS nanowires are excellent wide-bandgap optoelectronic materials with E-g = 2.65 eV determined by single-nanowire absorption measurements. Nanometer-scale spectroscopy on individual nanowires shows intense blue band-edge luminescence along with longer wavelength emissions due to transitions between gap states and photonic properties such as interference of confined waveguide modes propagating within the nanowires. The combined results show promise for applications in electronics, optoelectronics, and photonics, as well as photo- or electrocatalysis owing to a high density of reactive edge sites, and intercalation-type energy storage benefiting from facile access to the interlayer vdW gaps.
引用
收藏
页码:6117 / 6126
页数:10
相关论文
共 50 条
  • [21] Thermodynamics of the Vapor-Liquid-Solid Growth of Ternary III-V Nanowires in the Presence of Silicon
    Hijazi, Hadi
    Zeghouane, Mohammed
    Dubrovskii, Vladimir G.
    NANOMATERIALS, 2021, 11 (01) : 1 - 8
  • [22] Dynamics of Monolayer Growth in Vapor-Liquid-Solid GaAs Nanowires Based on Surface Energy Minimization
    Hijazi, Hadi
    Dubrovskii, Vladimir
    NANOMATERIALS, 2021, 11 (07)
  • [23] Selective-area vapor-liquid-solid growth of tunable InAsP quantum dots in nanowires
    Dalacu, Dan
    Mnaymneh, Khaled
    Wu, Xiaohua
    Lapointe, Jean
    Aers, Geof C.
    Poole, Philip J.
    Williams, Robin L.
    APPLIED PHYSICS LETTERS, 2011, 98 (25)
  • [24] Van der Waals heterostructures for optoelectronics: Progress and prospects
    Liao, Wugang
    Huang, Yanting
    Wang, Huide
    Zhang, Han
    APPLIED MATERIALS TODAY, 2019, 16 : 435 - 455
  • [25] Br-Induced Orientation Control of PbI2 van der Waals Nanowires and Their Optoelectronics
    Huh, Leeku
    Shim, Hyewon
    Shin, Naechul
    ACS PHOTONICS, 2021, 8 (11) : 3291 - 3300
  • [26] Chiral twisted van der Waals nanowires
    Sutter, Peter
    Wimer, Shawn
    Sutter, Eli
    NATURE, 2019, 570 (7761) : 354 - +
  • [27] van der Waals Heteroepitaxy of Semiconductor Nanowires
    Hong, Young Joon
    Lee, Chul-Ho
    SEMICONDUCTOR NANOWIRES I: GROWTH AND THEORY, 2015, 93 : 125 - 172
  • [28] Flexible electronics and optoelectronics of 2D van der Waals materials
    Yu, Huihui
    Cao, Zhihong
    Zhang, Zheng
    Zhang, Xiankun
    Zhang, Yue
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2022, 29 (04) : 671 - 690
  • [29] Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures
    Lee, Jae Yoon
    Shin, Jun-Hwan
    Lee, Gwan-Hyoung
    Lee, Chul-Ho
    NANOMATERIALS, 2016, 6 (11)
  • [30] Effect of growth conditions on the composition and structure of Si1-xGex nanowires grown by vapor-liquid-solid growth
    Lew, Kok-Keong
    Pan, Ling
    Dickey, Elizabeth C.
    Redwing, Joan M.
    JOURNAL OF MATERIALS RESEARCH, 2006, 21 (11) : 2876 - 2881