Novel cryogenic argon recovery from the air separation unit integrated with LNG regasification and CO2 transcritical power cycle

被引:32
|
作者
Mehrpooya, Mehdi [1 ]
Golestani, Behrooz [2 ]
Mousavian, S. M. Ali [2 ]
机构
[1] Univ Tehran, Dept Renewable Energies & Environm, Fac New Sci & Technol, Tehran, Iran
[2] Univ Tehran, Univ Coll Engn, Sch Chem Engn, POB 11365-4563, Tehran, Iran
关键词
Cryogenic air separation; Argon recovery; LNG regasification; Gas turbine; Transcritical CO2 power cycle; LIQUEFIED NATURAL-GAS; ORGANIC RANKINE-CYCLE; FIN HEAT-EXCHANGERS; THERMODYNAMIC ANALYSIS; EXERGY ANALYSIS; WORKING FLUIDS; SOLAR-ENERGY; OPTIMAL-DESIGN; FUEL-CELL; OPTIMIZATION;
D O I
10.1016/j.seta.2020.100767
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Two novel air separation units at cryogenic temperature were proposed to reach high purity nitrogen, oxygen, and argon. The first process refers to a three-column cryogenic air separation plant without using an external refrigeration system. An integrated process including cryogenic air separation, combined-cycle power plants (e.g., transcritical CO2 cycle and gas turbine), and LNG regasification was presented and analyzed as the second process to produce liquid oxygen and vaporize LNG without using external refrigeration source. Results of the first proposed process demonstrate that the specific energy consumption of high purity nitrogen, oxygen, and argon reduces to 18.7%, 13%, and 12% respectively when compared with the conventional processes. Specific energy consumptions and exergy efficiency for the second plant improved by nearly 33% and 16% in comparison with the first process. Also, the gas turbine and CO2 power cycle efficiencies were almost 35% and 45% in the second process. Exergy analysis on both systems demonstrated that expansion valve V-2 (99.42%), high-pressure distillation columns (99.41%), and argon recovery section (98.34%) have the lowest irreversibility and highest exergy efficiency. Meanwhile, the highest exergy destructions in the first and second proposed plants belong to the low-pressure distillation tower of the first process and the combustion chamber of the second process with around 3400 kW and 24,000 kW respectively.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Optimization of a novel cryogenic air separation process based on cold energy recovery of LNG with exergoeconomic analysis
    Wu, Yiqian
    Xiang, Yanlei
    Cai, Lei
    Liu, Haitian
    Liang, Ying
    JOURNAL OF CLEANER PRODUCTION, 2020, 275
  • [12] Thermodynamic evaluation of the novel distillation column of the air separation unit with integration of liquefied natural gas (LNG) regasification
    Chen, Shiqing
    Dong, Xuezhi
    Xu, Jian
    Zhang, Hualiang
    Gao, Qing
    Tan, Chunqing
    ENERGY, 2019, 171 : 341 - 359
  • [13] System optimisation and performance analysis of CO2 transcritical power cycle for waste heat recovery
    Wu, Chuang
    Yan, Xiao-jiang
    Wang, Shun-sen
    Bai, Kun-lun
    Di, Juan
    Cheng, Shang-fang
    Li, Jun
    ENERGY, 2016, 100 : 391 - 400
  • [14] Investigation of novel integrated air separation processes, cold energy recovery of liquefied natural gas and carbon dioxide power cycle
    Mehrpooya, Mehdi
    Kalhorzadeh, Masoud
    Chahartaghi, Mahmood
    JOURNAL OF CLEANER PRODUCTION, 2016, 113 : 411 - 425
  • [15] Conventional and advanced exergoeconomic assessments of a new air separation unit integrated with a carbon dioxide electrical power cycle and a liquefied natural gas regasification unit
    Mehrpooya, Mehdi
    Ansarinasab, Hojat
    Sharifzadeh, Mohammad Mehdi Moftakhari
    Rosen, Marc A.
    ENERGY CONVERSION AND MANAGEMENT, 2018, 163 : 151 - 168
  • [16] Analysis of an integrated cryogenic air separation unit, oxy-combustion carbon dioxide power cycle and liquefied natural gas regasification process by exergoeconomic method
    Mehrpooya, Mehdi
    Zonouz, Masood Jalali
    ENERGY CONVERSION AND MANAGEMENT, 2017, 139 : 245 - 259
  • [17] Off-design performance analysis of a transcritical CO2 Rankine cycle with LNG as cold source
    Wang, Jianyong
    Wang, Jiangfeng
    Dai, Yiping
    Zhao, Pan
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2017, 14 (09) : 774 - 783
  • [18] Experimental investigation of transcritical CO2 mixture power cycle with dual heat sources
    Wang, Jingyu
    Xing, Zhaohui
    Yin, Yiwei
    Sun, Liuchang
    Zhang, Xuanang
    Li, Ligeng
    Tian, Hua
    Shu, Gequn
    APPLIED ENERGY, 2025, 389
  • [19] Dynamic Performance Comparison of CO2 Mixture Transcritical Power Cycle Systems with Variable Configurations for Engine Waste Heat Recovery
    Wang, Rui
    Wang, Xuan
    Tian, Hua
    Shu, Gequn
    Zhang, Jing
    Gao, Yan
    Bian, Xingyan
    ENERGIES, 2020, 13 (01)
  • [20] Transcritical CO2 power cycle - Effects of regenerative heating using turbine bleed gas at intermediate pressure
    Mondal, Subha
    De, Sudipta
    ENERGY, 2015, 87 : 95 - 103