Adaptive Neural Output Feedback Control of Output-Constrained Nonlinear Systems With Unknown Output Nonlinearity

被引:137
作者
Liu, Zhi [1 ]
Lai, Guanyu [1 ]
Zhang, Yun [1 ]
Chen, Chun Lung Philip [2 ]
机构
[1] Guangdong Univ Technol, Fac Automat, Guangzhou 510641, Guangdong, Peoples R China
[2] Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive control; barrier Lyapunov function (BLF); Bouc-Wen hysteresis model; neural networks (NNs); TIME-DELAY SYSTEMS; BACKLASH-LIKE HYSTERESIS; DYNAMIC SURFACE CONTROL; BACKSTEPPING FUZZY CONTROL; TRACKING CONTROL; DEAD-ZONE; ROBUST STABILIZATION; ACTUATOR SATURATION; UNMODELED DYNAMICS; NETWORK CONTROL;
D O I
10.1109/TNNLS.2015.2420661
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the problem of adaptive neural output-feedback control for a class of special nonlinear systems with the hysteretic output mechanism and the uneasured states. A modified Bouc-Wen model is first employed to capture the output hysteresis phenomenon in the design procedure. For its fusion with the neural networks and the Nussbaum-type function, two key lemmas are established using some extended properties of this model. To avoid the bad system performance caused by the output nonlinearity, a barrier Lyapunov function technique is introduced to guarantee the prescribed constraint of the tracking error. In addition, a robust filtering method is designed to cancel the restriction that all the system states require to be measured. Based on the Lyapunov synthesis, a new neural adaptive controller is constructed to guarantee the prescribed convergence of the tracking error and the semiglobal uniform ultimate boundedness of all the signals in the closed-loop system. Simulations are implemented to evaluate the performance of the proposed neural control algorithm in this paper.
引用
收藏
页码:1789 / 1802
页数:14
相关论文
共 68 条
[1]   Robust Constraint Satisfaction for Continuous-Time Nonlinear Systems in Strict Feedback Form [J].
Buerger, Mathias ;
Guay, Martin .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (11) :2597-2601
[2]   Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation [J].
Cao, YY ;
Lin, ZL .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2003, 11 (01) :57-67
[3]   RETRACTED: Robust Observer Design for Unknown Inputs Takagi-Sugeno Models (Retracted Article) [J].
Chadli, Mohammed ;
Karimi, Hamid Reza .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (01) :158-164
[4]   Adaptive Fuzzy Control of a Class of Nonlinear Systems by Fuzzy Approximation Approach [J].
Chen, Bing ;
Liu, Xiaoping P. ;
Ge, Shuzhi Sam ;
Lin, Chong .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2012, 20 (06) :1012-1021
[5]   Novel adaptive neural control design for nonlinear MIMO time-delay systems [J].
Chen, Bing ;
Liu, Xiaoping ;
Liu, Kefu ;
Lin, Chong .
AUTOMATICA, 2009, 45 (06) :1554-1560
[6]   Direct adaptive fuzzy control of nonlinear strict-feedback systems [J].
Chen, Bing ;
Liu, Xiaoping ;
Liu, Kefu ;
Lin, Chong .
AUTOMATICA, 2009, 45 (06) :1530-1535
[7]   Robust Adaptive Neural Network Control for a Class of Uncertain MIMO Nonlinear Systems With Input Nonlinearities [J].
Chen, Mou ;
Ge, Shuzhi Sam ;
How, Bernard Voon Ee .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (05) :796-812
[8]   Adaptive Backstepping Fuzzy Control for Nonlinearly Parameterized Systems With Periodic Disturbances [J].
Chen, Weisheng ;
Jiao, Licheng ;
Li, Ruihong ;
Li, Jing .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2010, 18 (04) :674-685
[9]   Adaptive NN Backstepping Output-Feedback Control for Stochastic Nonlinear Strict-Feedback Systems With Time-Varying Delays [J].
Chen, Weisheng ;
Jiao, Licheng ;
Li, Jing ;
Li, Ruihong .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (03) :939-950
[10]   Globally stable adaptive backstepping fuzzy control for output-feedback systems with unknown high-frequency gain sign [J].
Chen, Weisheng ;
Zhang, Zhengqiang .
FUZZY SETS AND SYSTEMS, 2010, 161 (06) :821-836