Fundamental solutions of a class of ultra-hyperbolic operators on pseudo H-type groups

被引:1
作者
Bauer, Wolfram [1 ]
Froehly, Andre [1 ]
Markina, Irina [2 ]
机构
[1] Leibniz Univ Hannover, Inst Anal, Welfengarten 1, D-30167 Hannover, Germany
[2] Univ Bergen, Dept Math, POB 7800, N-5020 Bergen, Norway
关键词
Homogeneous Lie groups; Left invariant homogeneous; differential operator; Distributions; Local solvability; Bessel functions; INVARIANT DIFFERENTIAL-OPERATORS; HEISENBERG ULTRAHYPERBOLIC EQUATION; LOCAL SOLVABILITY; LIE-ALGEBRAS; REPRESENTATION; CLASSIFICATION; CRITERION;
D O I
10.1016/j.aim.2020.107186
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Pseudo H-type Lie groups G(r,s) of signature (r, s) are defined via a module action of the Clifford algebra Cl-r,Cl-s e on a vector space V congruent to R-2(n). They form a subclass of all 2-step nilpotent Lie groups. Based on their algebraic structure they can be equipped with a left-invariant pseudo-Riemannian metric. Let N-r,N-s denote the Lie algebra corresponding to G(r,s). In the case s > 0 a choice of left-invariant vector fields [X-1, ..., X-2n] which generate a complement of the center of N(r,s )gives rise to a second order differential operator Delta(r,s) := (X-1(2)+ ... + X-n(2)) - (X-n+1(2) + ... +X-2n(2)), which we call ultra-hyperbolic. We prove that Delta(r,s) is locally solvable if and only if r = 0. In particular, it follows that Delta(r,s) does not admit a fundamental solution in the space D' (G(r,s)) of Schwartz distributions whenever r > 0. In terms of classical special functions we present families of fundamental solutions of A(0,s) in the class of tempered distributions S'(G(0,s)) and study their properties. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:46
相关论文
共 36 条
[1]   Classification of maximal transitive prolongations of super-Poincare algebras [J].
Altomani, Andrea ;
Santi, Andrea .
ADVANCES IN MATHEMATICS, 2014, 265 :60-96
[2]  
[Anonymous], [No title captured]
[3]  
[Anonymous], 1964, Generalized Functions
[4]   GLOBAL-SOLUTIONS OF INVARIANT DIFFERENTIAL-OPERATORS ON CERTAIN LIE-GROUPS [J].
BATTESTI, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 77 (02) :261-308
[5]   SPECTRAL ZETA FUNCTION ON PSEUDO H-TYPE NILMANIFOLDS [J].
Bauer, Wolfram ;
Furutani, Kenro ;
Iwasaki, Chisato .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (04) :539-582
[6]   The green function of model step two hypoelliptic operators and the analysis of certain tangential cauchy Riemann complexes [J].
Beals, R ;
Gaveau, B ;
Greiner, P .
ADVANCES IN MATHEMATICS, 1996, 121 (02) :288-345
[7]   Hamilton-Jacobi theory and the heat kernel on Heisenberg groups [J].
Beals, R ;
Gaveau, B ;
Greiner, PC .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2000, 79 (07) :633-689
[8]  
Calin O, 2011, APPL NUMER HARMON AN, P3, DOI 10.1007/978-0-8176-4995-1
[9]   EXPLICIT FUNDAMENTAL SOLUTIONS OF SOME SECOND ORDER DIFFERENTIAL OPERATORS ON HEISENBERG GROUPS [J].
Cardoso, Isolda ;
Saal, Linda .
COLLOQUIUM MATHEMATICUM, 2012, 129 (02) :263-288
[10]  
Ciatti P., 2000, ANN MAT PUR APPL, V178, P1