Regularity of the Speed of Biased Random Walk in a One-Dimensional Percolation Model

被引:6
作者
Gantert, Nina [1 ]
Meiners, Matthias [2 ]
Mueller, Sebastian [3 ]
机构
[1] Tech Univ Munich, Fak Math, D-85748 Garching, Germany
[2] Univ Innsbruck, Inst Math, A-6060 Innsbruck, Austria
[3] Aix Marseille Univ, CNRS, Cent Marseille, I2M, Marseille, France
关键词
Biased random walk; Regularity of the speed; Invariance principle; Ladder graph; Percolation; QUENCHED INVARIANCE-PRINCIPLES; EINSTEIN RELATION; LIMIT-THEOREM;
D O I
10.1007/s10955-018-1982-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider biased random walks on the infinite cluster of a conditional bond percolation model on the infinite ladder graph. Axelson-Fisk and Haggstrom established for this model a phase transition for the asymptotic linear speed (v) over bar of the walk. Namely, there exists some critical value lambda(c) > 0 such that (v) over bar > 0 if lambda is an element of (0, lambda(c)) and (v) over bar = 0 if lambda >= lambda(c). We show that the speed (v) over bar is continuous in lambda on (0, infinity) and differentiable on (0, lambda(c)/2). Moreover, we characterize the derivative as a covariance. For the proof of the differentiability of (v) over bar on (0, lambda(c)/2), we require and prove a central limit theorem for the biased random walk. Additionally, we prove that the central limit theorem fails to hold for lambda >= lambda(c)/2.
引用
收藏
页码:1123 / 1160
页数:38
相关论文
共 29 条
[11]   Quenched invariance principle for simple random walk on percolation clusters [J].
Berger, Noam ;
Biskup, Marek .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 137 (1-2) :83-120
[12]  
Billingsley P, 1999, WILEY SERIES PROBABI, V2nd
[13]  
Deijfen M, 2010, ALEA-LAT AM J PROBAB, V7, P19
[14]   AN INVARIANCE-PRINCIPLE FOR REVERSIBLE MARKOV-PROCESSES - APPLICATIONS TO RANDOM MOTIONS IN RANDOM-ENVIRONMENTS [J].
DEMASI, A ;
FERRARI, PA ;
GOLDSTEIN, S ;
WICK, WD .
JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (3-4) :787-855
[15]   Phase Transition for the Speed of the Biased Random Walk on the Supercritical Percolation Cluster [J].
Fribergh, Alexander ;
Hammond, Alan .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (02) :173-245
[16]   Einstein relation for reversible diffusions in a random environment [J].
Gantert, Nina ;
Mathieu, Pierre ;
Piatnitski, Andrey .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (02) :187-228
[17]  
Gut A, 2009, SPRINGER SER OPER RE, P1, DOI 10.1007/978-0-387-87835-5
[18]  
Gut A., 2005, PROBABILITY GRADUATE
[19]   Biased random walks on Galton-Watson trees [J].
Lyons, R ;
Pemantle, R ;
Peres, Y .
PROBABILITY THEORY AND RELATED FIELDS, 1996, 106 (02) :249-264
[20]   Quenched invariance principles for random walks on percolation clusters [J].
Mathieu, P. ;
Piatnitski, A. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2085) :2287-2307