Regularity of the Speed of Biased Random Walk in a One-Dimensional Percolation Model

被引:6
作者
Gantert, Nina [1 ]
Meiners, Matthias [2 ]
Mueller, Sebastian [3 ]
机构
[1] Tech Univ Munich, Fak Math, D-85748 Garching, Germany
[2] Univ Innsbruck, Inst Math, A-6060 Innsbruck, Austria
[3] Aix Marseille Univ, CNRS, Cent Marseille, I2M, Marseille, France
关键词
Biased random walk; Regularity of the speed; Invariance principle; Ladder graph; Percolation; QUENCHED INVARIANCE-PRINCIPLES; EINSTEIN RELATION; LIMIT-THEOREM;
D O I
10.1007/s10955-018-1982-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider biased random walks on the infinite cluster of a conditional bond percolation model on the infinite ladder graph. Axelson-Fisk and Haggstrom established for this model a phase transition for the asymptotic linear speed (v) over bar of the walk. Namely, there exists some critical value lambda(c) > 0 such that (v) over bar > 0 if lambda is an element of (0, lambda(c)) and (v) over bar = 0 if lambda >= lambda(c). We show that the speed (v) over bar is continuous in lambda on (0, infinity) and differentiable on (0, lambda(c)/2). Moreover, we characterize the derivative as a covariance. For the proof of the differentiability of (v) over bar on (0, lambda(c)/2), we require and prove a central limit theorem for the biased random walk. Additionally, we prove that the central limit theorem fails to hold for lambda >= lambda(c)/2.
引用
收藏
页码:1123 / 1160
页数:38
相关论文
共 29 条
[1]   Speed of the biased random walk on a Galton-Watson tree [J].
Aidekon, Elie .
PROBABILITY THEORY AND RELATED FIELDS, 2014, 159 (3-4) :597-617
[2]  
[Anonymous], 2009, American Mathematical Soc.
[3]  
Athreya K. B., 2004, Branching processes
[4]   CONDITIONAL PERCOLATION ON ONE-DIMENSIONAL LATTICES [J].
Axelson-Fisk, Marina ;
Haggstrom, Olle .
ADVANCES IN APPLIED PROBABILITY, 2009, 41 (04) :1102-1122
[5]   Biased random walk in a one-dimensional percolation model [J].
Axelson-Fisk, Marina ;
Haggstrom, Olle .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (10) :3395-3415
[6]   DIRECTED DIFFUSION IN A PERCOLATION NETWORK [J].
BARMA, M ;
DHAR, D .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (08) :1451-1458
[7]   A regeneration proof of the centeral limit theorem for uniformly Erodic Markov chains [J].
Bednorz, Witold ;
Latuszynski, Krzysztof ;
Latala, Rafal .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 :85-98
[8]   Lyons-Pemantle-Peres Monotonicity Problem for High Biases [J].
Ben Arous, Gerard ;
Fribergh, Alexander ;
Sidoravicius, Vladas .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (04) :519-530
[9]   Einstein relation for biased random walk on Galton-Watson trees [J].
Ben Arous, Gerard ;
Hu, Yueyun ;
Olla, Stefano ;
Zeitouni, Ofer .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (03) :698-721
[10]   The speed of biased random walk on percolation clusters [J].
Berger, N ;
Gantert, N ;
Peres, Y .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 126 (02) :221-242