On the sectional category of subgroup inclusions and Adamson cohomology theory

被引:3
作者
Blaszczyk, Zbigniew [1 ]
Carrasquel-Vera, Jose Gabriel [1 ]
Baro, Arturo Espinosa [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, Umultowska 87, PL-60479 Poznan, Poland
关键词
Adamson cohomology; Sectional category; Topological complexity; LUSTERNIK-SCHNIRELMANN CATEGORY; MOTION;
D O I
10.1016/j.jpaa.2021.106959
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The sectional category of a subgroup inclusion H hooked right arrow G can be defined as the sectional category of the corresponding map between Eilenberg-MacLane spaces. We extend a characterization of topological complexity of aspherical spaces given by Farber, Grant, Lupton and Oprea to the context of sectional category of subgroup inclusions and investigate it by means of Adamson cohomology theory. (C) 2021 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:18
相关论文
共 29 条
[1]  
ADAMSON IT, 1954, P GLASGOW MATH ASSOC, V2, P66, DOI DOI 10.1017/S2040618500033050
[2]   Comparison of relative group (co)homologies [J].
Arciniega-Nevárez J.A. ;
Cisneros-Molina J.L. .
Boletín de la Sociedad Matemática Mexicana, 2017, 23 (1) :41-74
[3]   Relative group homology theories with coefficients and the comparison homomorphism [J].
Ariciniega-Nevarez, Jose Antonio ;
Cisneros-Molina, Jose Luis ;
Saldana, Luis Jorge Sanchez .
QUAESTIONES MATHEMATICAE, 2021, 44 (08) :1107-1132
[4]   LUSTERNIK-SCHNIRELMANN CATEGORY OF GRASSMANNIANS [J].
BERSTEIN, I .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :129-134
[5]  
Berstein Israel., 1962, Fundamenta Mathematicae, V3, P265, DOI DOI 10.4064/FM-50-3-265-279
[6]  
BLOWERS JV, 1977, T AM MATH SOC, V227, P345
[7]  
BROWN KS, 1982, GRADUATE TEXTS MATH, V87
[8]  
Capovilla P, ARXIV201200612
[9]   MOTION PLANNING IN SPACES WITH SMALL FUNDAMENTAL GROUPS [J].
Costa, Armindo ;
Farber, Michael .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (01) :107-119
[10]  
DIECK TT, 1987, STUDIES MATH, V8