Facile Synthesis of Flower-like (BiO)2CO3@MnO2 and Bi2O3@MnO2 Nanocomposites for Supercapacitors

被引:58
作者
Ma, Junjun [1 ]
Zhu, Shijin [1 ]
Shan, Qianyuan [1 ]
Liu, Shifeng [1 ]
Zhang, Yuxin [1 ,2 ]
Dong, Fan [3 ]
Liu, Hongdong [4 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Natl Key Lab Fundamental Sci Micro Nanodevices &, Chongqing 400044, Peoples R China
[3] Chongqing Technol & Business Univ, Coll Environm & Biol Engn, Chongqing Key Lab Catalysis & Funct Organ Mol, Chongqing 400067, Peoples R China
[4] Chongqing Univ Arts & Sci, Coll Mat & Chem Engn, Chongqing 402160, Peoples R China
基金
国家教育部博士点专项基金资助; 中国国家自然科学基金;
关键词
Bismuth subcarbonate; Manganese dioxide; Supercapacitor; Nanocomposite; Electrochemistry; LARGE-SCALE SYNTHESIS; RATIONAL DESIGN; TEMPLATE-FREE; PERFORMANCE; NANOSTRUCTURES; MICROSPHERES; COMPOSITE;
D O I
10.1016/j.electacta.2015.04.018
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Manganese dioxide (MnO2)-decorated flower-like bismuth subcarbonate ((BiO)(2)CO3) and calcined product (Bi2O3) have been uniformly fabricated via a hydrothermal approach, and further investigated as the electrodes for supercapacitor. Both of the core-shell nanostructures displayed moderate capacities (196 F g (1) or 54.5 mAhg (1) for (BiO)(2)CO3@MnO2 and 139.4 F g (1) or 38.7 mAhg (1) for Bi2O3@MnO2) with superb cycling stability (125% for (BiO)(2)CO3@MnO2 and 112% for Bi2O3@MnO2 after 1000 cycles). The electrochemical properties of the electrode are strongly related to their high surface area, porous structure and good conductivity, which cannot only provide rich active sites but also shorten the ion transport pathways. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 29 条
[1]  
Bosi Yin S.Z., 2014, FACILE SYNTHESIS ULT, P9999
[2]   Shape-Controlled Synthesis of One-Dimensional MnO2 via a Facile Quick-Precipitation Procedure and its Electrochemical Properties [J].
Chen, Sheng ;
Zhu, Junwu ;
Han, Qiaofeng ;
Zheng, Zhijun ;
Yang, Yong ;
Wang, Xin .
CRYSTAL GROWTH & DESIGN, 2009, 9 (10) :4356-4361
[3]   Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors [J].
Cottineau, T ;
Toupin, M ;
Delahaye, T ;
Brousse, T ;
Bélanger, D .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 82 (04) :599-606
[4]   Electrochemical supercapacitor studies of nanostructured α-MnO2 synthesized by microemulsion method and the effect of annealing [J].
Devaraj, S. ;
Munichandraiah, N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (02) :A80-A88
[5]   Template-free fabrication and growth mechanism of uniform (BiO)2CO3 hierarchical hollow microspheres with outstanding photocatalytic activities under both UV and visible light irradiation [J].
Dong, Fan ;
Ho, Wing-Kei ;
Lee, S. C. ;
Wu, Zhongbiao ;
Fu, Min ;
Zou, Shichun ;
Huang, Yu .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (33) :12428-12436
[6]   X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites [J].
Gandhiraman, Ram P. ;
Nordlund, Dennis ;
Javier, Cristina ;
Koehne, Jessica E. ;
Chen, Bin ;
Meyyappan, M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (32) :18706-18712
[7]   Design and Synthesis of Hierarchical MnO2 Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes [J].
Hou, Ye ;
Cheng, Yingwen ;
Hobson, Tyler ;
Liu, Jie .
NANO LETTERS, 2010, 10 (07) :2727-2733
[8]   Carbon materials for electrochemical capacitors [J].
Inagaki, Michio ;
Konno, Hidetaka ;
Tanaike, Osamu .
JOURNAL OF POWER SOURCES, 2010, 195 (24) :7880-7903
[9]   Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances [J].
Jiang, Hao ;
Sun, Ting ;
Li, Chunzhong ;
Ma, Jan .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (06) :2751-2756
[10]   High-rate electrochemical capacitors from highly graphitic carbon-tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires [J].
Jiang, Hao ;
Yang, Liping ;
Li, Chunzhong ;
Yan, Chaoyi ;
Lee, Pooi See ;
Ma, Jan .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (05) :1813-1819