Large time behaviour for the Fokker-Planck equation with general potential

被引:3
作者
Li, Te [1 ]
Zhang, Zhifei [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Fokker-Planck equation; large time behavior; hypocoercivity method; EQUILIBRIUM; TREND;
D O I
10.1007/s11425-017-9084-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the large time behaviour of the solution of the Fokker-Planck equation with general potential. For the long range potential, we prove the polynomial decay estimate in time of the solution. For the slowly growing potential, we prove the sub-exponential convergence of the solution toward the equilibrium.
引用
收藏
页码:137 / 150
页数:14
相关论文
共 50 条
  • [21] INPAINTING WITH FOKKER-PLANCK EQUATION
    Ignat, Anca
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2019, 20 (03): : 225 - 233
  • [22] The Wigner(-Poisson)-Fokker-Planck equation with singular potential
    Li, Bin
    Shen, Jie-qiong
    APPLICABLE ANALYSIS, 2017, 96 (04) : 563 - 577
  • [23] Numerical algorithm for the time fractional Fokker-Planck equation
    Deng, Weihua
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) : 1510 - 1522
  • [24] The Fokker-Planck Equation with Absorbing Boundary Conditions
    Hwang, Hyung Ju
    Jang, Juhi
    Velazquez, Juan J. L.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 214 (01) : 183 - 233
  • [25] The Fokker-Planck equation with subcritical confinement force
    Kavian, Otared
    Mischler, Stephane
    Ndao, Mamadou
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 151 : 171 - 211
  • [26] Fokker-Planck equation for fractional systems
    Tarasov, Vasily E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (06): : 955 - 967
  • [27] Fokker-Planck equation on metric graphs
    Matrasulov, J.
    Sabirov, K.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 608
  • [28] Copulas from the Fokker-Planck equation
    Choe, Hi Jun
    Ahn, Cheonghee
    Kim, Beom Jin
    Ma, Yong-Ki
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 406 (02) : 519 - 530
  • [29] The variational formulation of the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (01) : 1 - 17
  • [30] Free energy and the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    PHYSICA D, 1997, 107 (2-4): : 265 - 271