Transcendental infinite sums

被引:27
作者
Adhikari, SD
Saradha, N
Shorey, TN
Tijdeman, R
机构
[1] Mehta Res Inst, Allahabad 211019, Uttar Pradesh, India
[2] Tata Inst Fundamental Res, Mumbai 400005, India
[3] Leiden Univ, Inst Math, NL-2300 RA Leiden, Netherlands
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2001年 / 12卷 / 01期
关键词
D O I
10.1016/S0019-3577(01)80001-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that it follows from results on linear forms in logarithms of algebraic numbers that numbers such [GRAPHICS] where chi is any non-principal Dirichlet character and (F-n)(n=0)(infinity) the Fibonacci sequence, are transcendental.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 13 条
[1]  
BACKSTROM RP, 1991, FIBONACCI Q, V29, P200
[2]  
Baker A., 1973, J NUMBER THEORY, V5, P224, DOI [DOI 10.1016/0022-314X(73)90048-6, 10.1016/0022-314X(73)90048-6]
[3]  
Baker A., 1975, Transcendental number theory
[4]  
BECKER PG, 1994, MATH NACHR, V168, P5
[5]  
Brousseau Bro. A., 1969, FIBONACCI QUART, V7.2, P143
[6]   THE RIEMANN ZETA AND ALLIED FUNCTIONS [J].
CHOWLA, S .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 58 (03) :287-305
[7]  
Duverney D, 1998, NUMBER THEORY, P157
[8]  
Good I. J., 1974, FIBONACCI QUART, V12, P346
[9]  
Lehmer D. H., 1975, ACTA ARITH, V27, P125, DOI DOI 10.4064/AA-27-1-125-142
[10]  
LIVINGSTON AE, 1965, CANAD MATH B, V8, P413