On a class of fully nonlinear parabolic equations

被引:12
|
作者
Antontsev, Stanislav [1 ,2 ]
Shmarev, Sergey [3 ]
机构
[1] Lavrentyev Inst Hydrodynam SB RAS, Novosibirsk, Russia
[2] Univ Lisbon, CMAF CIO, Lisbon, Portugal
[3] Univ Oviedo, Dept Matemat, C Calvo Sotelo S-N, Oviedo 33007, Spain
基金
俄罗斯科学基金会;
关键词
Fully nonlinear parabolic equation; strong solution; asymptotic behavior; extinction in a finite time; POROUS-MEDIUM EQUATION; BEHAVIOR;
D O I
10.1515/anona-2016-0055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the homogeneous Dirichlet problem for the fully nonlinear equation u(t) = vertical bar Delta u vertical bar(m- 2) Delta u - d vertical bar u vertical bar(sigma-2) u + f in Q(T) = Omega x (0, T), with the parameters m > 1, sigma > 1 and d >= 0. At the points where Delta u = 0, the equation degenerates if m > 2, or becomes singular if m is an element of (1, 2). We derive conditions of existence and uniqueness of strong solutions, and study the asymptotic behavior of strong solutions as t -> infinity. Sufficient conditions for exponential or power decay of parallel to del u(t)parallel to(2),(Omega) are derived. It is proved that for certain ranges of the exponents m and s, every strong solution vanishes in a finite time.
引用
收藏
页码:79 / 100
页数:22
相关论文
共 50 条