Bilinear fractional integral operators on Morrey spaces

被引:5
|
作者
He, Qianjun [1 ]
Yan, Dunyan [2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Bilinear fractional integral operators; Stein-Weiss inequality; Morrey spaces; WEIGHTED INEQUALITIES;
D O I
10.1007/s11117-020-00763-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a plethora of the boundedness property of Adams type for bilinear fractional integral operators of the form B-alpha(f, g) (x) = integral(Rn) f(x -y) g(x +y)/vertical bar y vertical bar(n-alpha) dy, 0 < alpha < n. For 1 < t <= s < infinity, we prove the non -weighted case through the known Adams type result. And we show that these results of Adams type is optimal. For 0 < t <= s < infinity and 0 < t <= 1, we obtain new result of a weighted theory describing Morrey boundedness of above form operators if two weights (nu, <(omega)over right arrow>) satisfy [nu, (omega) over right arrow](t, (q) over right arrow /a) (r,as) = sup (Q,Q'is an element of DQ subset of Q) (vertical bar Q vertical bar/vertical bar Q'vertical bar) (1-s/as) vertical bar Q'vertical bar 1/r (integral Q (nu t/1-t)) (1-t/t) Pi(2)(i=1)(integral(Q') (omega i-(qi/a)t))(1/(qi/a)') < infinity, 0 < t < s <1 and [nu, (omega) over right arrow](t, (q) over right arrow /a) (r,as) = sup (Q,Q'is an element of DQ subset of Q) (vertical bar Q vertical bar/vertical bar Q'vertical bar) (1-s/as) vertical bar Q'vertical bar 1/r (integral Q (nu t/1-t)) (1-t/t) Pi(2)(i=1)(integral(Q') (omega i-(qi/a)'))(1/(qi/a)') < infinity, s >= 1 where parallel to nu parallel to(L infinity(Q)) = sup(Q) nu when t = 1, a, r, s, t and <(q)over right arrow>, satisfy proper conditions. As some applications we formulate a bilinear version of the Olsen inequality, the Fetterman Stein type dual inequality and the Stein Weiss inequality on Money spaces for fractional integrals.
引用
收藏
页码:399 / 429
页数:31
相关论文
共 50 条
  • [1] Bilinear fractional integral operators on Morrey spaces
    Qianjun He
    Dunyan Yan
    Positivity, 2021, 25 : 399 - 429
  • [2] Boundedness of Bilinear Fractional Integral Operators on Vanishing Generalized Morrey Spaces
    Liu, Yuqin
    Fu, Xing
    JOURNAL OF MATHEMATICAL STUDY, 2022, 55 (02) : 109 - 123
  • [3] BOUNDEDNESS AND COMPACTNESS OF COMMUTATORS FOR BILINEAR FRACTIONAL INTEGRAL OPERATORS ON MORREY SPACES
    Guo, Q.
    Zhou, J.
    ANALYSIS MATHEMATICA, 2021, 47 (01) : 81 - 103
  • [4] Boundedness and Compactness of Commutators for Bilinear Fractional Integral Operators on Morrey Spaces
    Q. Guo
    J. Zhou
    Analysis Mathematica, 2021, 47 : 81 - 103
  • [5] Two classes of bilinear fractional integral operators and their commutators on generalized fractional Morrey spaces
    Lu, Guanghui
    Tao, Shuangping
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2021, 12 (04)
  • [6] Two classes of bilinear fractional integral operators and their commutators on generalized fractional Morrey spaces
    Guanghui Lu
    Shuangping Tao
    Journal of Pseudo-Differential Operators and Applications, 2021, 12
  • [7] Morrey spaces and fractional integral operators
    Eridani, A.
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    EXPOSITIONES MATHEMATICAE, 2009, 27 (03) : 227 - 239
  • [8] Bilinear rough singular integral operators on Morrey spaces
    Salim, Daniel
    Sawano, Yoshihiro
    Zanu, Pebrudal
    JOURNAL OF ANALYSIS, 2020, 28 (03): : 817 - 825
  • [9] Bilinear rough singular integral operators on Morrey spaces
    Daniel Salim
    Yoshihiro Sawano
    Pebrudal Zanu
    The Journal of Analysis, 2020, 28 : 817 - 825
  • [10] Necessary and Sufficient Conditions for Boundedness of Commutators of Bilinear Fractional Integral Operators on Morrey Spaces
    Suixin HE
    Jiang ZHOU
    Journal of Mathematical Research with Applications, 2016, 36 (06) : 711 - 717