Finite-size scaling analysis of the distributions of pseudo-critical temperatures in spin glasses

被引:19
作者
Billoire, A. [1 ,2 ]
Fernandez, L. A. [3 ,4 ]
Maiorano, A. [5 ]
Marinari, E. [5 ]
Martin-Mayor, V. [3 ,4 ]
Yllanes, D. [3 ,4 ]
机构
[1] CEA Saclay, Inst Theoret Phys, F-91191 Gif Sur Yvette, France
[2] CNRS, F-91191 Gif Sur Yvette, France
[3] Univ Complutense, Dept Fis Teor 1, E-28040 Madrid, Spain
[4] Inst Biocomputac & Fis Sistemas Complejos BIFI, E-50018 Zaragoza, Spain
[5] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
关键词
critical exponents and amplitudes (theory); finite-size scaling; spin glasses (theory); CRITICAL DISORDERED-SYSTEMS; SOLVABLE MODEL; ENSEMBLES; SMIRNOV; LENGTH;
D O I
10.1088/1742-5468/2011/10/P10019
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Using the results of large scale numerical simulations we study the probability distribution of the pseudo-critical temperature for the three-dimensional Edwards-Anderson Ising spin glass and for the fully connected Sherrington-Kirkpatrick model. We find that the behaviour of our data is nicely described by straightforward finite-size scaling relations.
引用
收藏
页数:19
相关论文
共 33 条
[21]  
Fisher K., 1993, Spin Glasses
[22]   EFFECT OF RANDOM DEFECTS ON CRITICAL BEHAVIOR OF ISING MODELS [J].
HARRIS, AB .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1974, 7 (09) :1671-1692
[23]   Critical behavior of three-dimensional Ising spin glass models [J].
Hasenbusch, Martin ;
Pelissetto, Andrea ;
Vicari, Ettore .
PHYSICAL REVIEW B, 2008, 78 (21)
[24]   Extraction of the spin glass correlation length [J].
Joh, YG ;
Orbach, R ;
Wood, GG ;
Hammann, J ;
Vincent, E .
PHYSICAL REVIEW LETTERS, 1999, 82 (02) :438-441
[25]   Universality in three-dimensional ising spin glasses:: A Monte Carlo study [J].
Katzgraber, Helmut G. ;
Koerner, Mathias ;
Young, A. P. .
PHYSICAL REVIEW B, 2006, 73 (22)
[26]   CRITICAL FINITE-SIZE CORRECTIONS FOR THE SHERRINGTON-KIRKPATRICK SPIN-GLASS [J].
PARISI, G ;
RITORT, F ;
SLANINA, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (02) :247-259
[27]   Revisiting the theory of finite size scaling in disordered systems:: ν can be less than 2/d [J].
Pazmandi, F ;
Scalettar, RT ;
Zimanyi, GT .
PHYSICAL REVIEW LETTERS, 1997, 79 (25) :5130-5133
[28]   Predictive power of MCT: numerical testing and finite size scaling for a mean field spin glass [J].
Sarlat, Thomas ;
Billoire, Alain ;
Biroli, Giulio ;
Bouchaud, Jean-Philippe .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
[29]   SOLUTION OF SOLVABLE MODEL OF A SPIN GLASS [J].
THOULESS, DJ ;
ANDERSON, PW ;
PALMER, RG .
PHILOSOPHICAL MAGAZINE, 1977, 35 (03) :593-601
[30]   On orthogonal and symplectic matrix ensembles [J].
Tracy, CA ;
Widom, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (03) :727-754