Finite-size scaling analysis of the distributions of pseudo-critical temperatures in spin glasses

被引:19
作者
Billoire, A. [1 ,2 ]
Fernandez, L. A. [3 ,4 ]
Maiorano, A. [5 ]
Marinari, E. [5 ]
Martin-Mayor, V. [3 ,4 ]
Yllanes, D. [3 ,4 ]
机构
[1] CEA Saclay, Inst Theoret Phys, F-91191 Gif Sur Yvette, France
[2] CNRS, F-91191 Gif Sur Yvette, France
[3] Univ Complutense, Dept Fis Teor 1, E-28040 Madrid, Spain
[4] Inst Biocomputac & Fis Sistemas Complejos BIFI, E-50018 Zaragoza, Spain
[5] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2011年
关键词
critical exponents and amplitudes (theory); finite-size scaling; spin glasses (theory); CRITICAL DISORDERED-SYSTEMS; SOLVABLE MODEL; ENSEMBLES; SMIRNOV; LENGTH;
D O I
10.1088/1742-5468/2011/10/P10019
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Using the results of large scale numerical simulations we study the probability distribution of the pseudo-critical temperature for the three-dimensional Edwards-Anderson Ising spin glass and for the fully connected Sherrington-Kirkpatrick model. We find that the behaviour of our data is nicely described by straightforward finite-size scaling relations.
引用
收藏
页数:19
相关论文
共 33 条
[1]   Absence of self-averaging and universal fluctuations in random systems near critical points [J].
Aharony, A ;
Harris, AB .
PHYSICAL REVIEW LETTERS, 1996, 77 (18) :3700-3703
[2]   Critical disordered systems with constraints and the inequality ν>2/d [J].
Aharony, A ;
Harris, AB ;
Wiseman, S .
PHYSICAL REVIEW LETTERS, 1998, 81 (02) :252-255
[3]   Static versus Dynamic Heterogeneities in the D=3 Edwards-Anderson-Ising Spin Glass [J].
Alvarez Banos, R. ;
Cruz, A. ;
Fernandez, L. A. ;
Gil-Narvion, J. M. ;
Gordillo-Guerrero, A. ;
Guidetti, M. ;
Maiorano, A. ;
Mantovani, F. ;
Marinari, E. ;
Martin-Mayor, V. ;
Monforte-Garcia, J. ;
Munoz Sudupe, A. ;
Navarro, D. ;
Parisi, G. ;
Perez-Gaviro, S. ;
Ruiz-Lorenzo, J. J. ;
Schifano, S. F. ;
Seoane, B. ;
Tarancon, A. ;
Tripiccione, R. ;
Yllanes, D. .
PHYSICAL REVIEW LETTERS, 2010, 105 (17)
[4]  
Amit D J., 2005, Field theory, the renormalization group, and critical phenomena: graphs to computers, V3rd edn
[5]   DISTRIBUTION OF 2-SAMPLE CRAMER-VON MISES CRITERION [J].
ANDERSON, TW .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (03) :1148-&
[6]  
[Anonymous], 1993, SPIN GLASSES EXPT IN
[7]   Finite-size corrections in the Sherrington-Kirkpatrick model [J].
Aspelmeier, T. ;
Billoire, A. ;
Marinari, E. ;
Moore, M. A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (32)
[8]   Nature of the spin-glass phase at experimental length scales [J].
Banos, R. Alvarez ;
Cruz, A. ;
Fernandez, L. A. ;
Gil-Narvion, J. M. ;
Gordillo-Guerrero, A. ;
Guidetti, M. ;
Maiorano, A. ;
Mantovani, F. ;
Marinari, E. ;
Martin-Mayor, V. ;
Monforte-Garcia, J. ;
Sudupe, A. Munoz ;
Navarro, D. ;
Parisi, G. ;
Perez-Gaviro, S. ;
Ruiz-Lorenzo, J. J. ;
Schifano, S. F. ;
Seoane, B. ;
Tarancon, A. ;
Tripiccione, R. ;
Yllanes, D. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
[9]   Disorder averaging and finite-size scaling [J].
Bernardet, K ;
Pázmándi, F ;
Batrouni, GG .
PHYSICAL REVIEW LETTERS, 2000, 84 (19) :4477-4480
[10]   Direct experimental evidence of a growing length scale accompanying the glass transition [J].
Berthier, L ;
Biroli, G ;
Bouchaud, JP ;
Cipelletti, L ;
El Masri, D ;
L'Hôte, D ;
Ladieu, F ;
Pierno, M .
SCIENCE, 2005, 310 (5755) :1797-1800