Quantum Natural Gradient

被引:286
作者
Stokes, James [1 ,2 ]
Izaac, Josh [3 ]
Killoran, Nathan [3 ]
Carleo, Giuseppe [1 ]
机构
[1] Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
[2] Flatiron Inst, Ctr Computat Math, New York, NY 10010 USA
[3] Xanadu, 777 Bay St, Toronto, ON, Canada
关键词
D O I
10.22331/q-2020-05-25-269
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A quantum generalization of Natural Gradient Descent is presented as part of a general-purpose optimization framework for variational quantum circuits. The optimization dynamics is interpreted as moving in the steepest descent direction with respect to the Quantum Information Geometry, corresponding to the real part of the Quantum Geometric Tensor (QGT), also known as the Fubini-Study metric tensor. An efficient algorithm is presented for computing a block-diagonal approximation to the Fubini-Study metric tensor for parametrized quantum circuits, which may be of independent interest.
引用
收藏
页数:15
相关论文
共 36 条
[1]   Natural gradient works efficiently in learning [J].
Amari, S .
NEURAL COMPUTATION, 1998, 10 (02) :251-276
[2]  
[Anonymous], 2017, ARXIV171104623
[3]  
Bergholm V., 2018, ARXIV181104968
[4]   Geometric Speed Limit of Accessible Many-Body State Preparation [J].
Bukov, Marin ;
Sels, Dries ;
Polkovnikov, Anatoli .
PHYSICAL REVIEW X, 2019, 9 (01)
[5]   Light-cone effect and supersonic correlations in one-and two-dimensional bosonic superfluids [J].
Carleo, Giuseppe ;
Becca, Federico ;
Sanchez-Palencia, Laurent ;
Sorella, Sandro ;
Fabrizio, Michele .
PHYSICAL REVIEW A, 2014, 89 (03)
[6]   Localization and Glassy Dynamics Of Many-Body Quantum Systems [J].
Carleo, Giuseppe ;
Becca, Federico ;
Schiro, Marco ;
Fabrizio, Michele .
SCIENTIFIC REPORTS, 2012, 2
[7]  
Chen M.-C., 2019, SYNTHETIC MAT AGING
[8]  
Crawford Ophelia, 2019, ARXIV190806942
[9]  
Du Yuxuan, 2018, ARXIV181011922
[10]  
Farhi E., 2018, Classification with Quantum Neural Networks on Near Term Processors