Lattice solitons in PT-symmetric mixed linear-nonlinear optical lattices

被引:181
作者
He, Yingji [1 ]
Zhu, Xing [2 ]
Mihalache, Dumitru [3 ]
Liu, Jinglin [1 ]
Chen, Zhanxu [1 ]
机构
[1] Guangdong Polytech Normal Univ, Sch Elect & Informat, Guangzhou 510665, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
[3] Horia Hulubei Natl Inst Phys & Nucl Engn, RO-077125 Magurele, Romania
来源
PHYSICAL REVIEW A | 2012年 / 85卷 / 01期
基金
中国国家自然科学基金;
关键词
GAP SOLITONS; REAL; MODES;
D O I
10.1103/PhysRevA.85.013831
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report the existence and stability of lattice solitons in parity-time (PT)-symmetric mixed linear-nonlinear optical lattices in Kerr media. We focus on studying the characteristic effects on soliton propagation in the semi-infinite gap if we consider different amplitudes of real and imaginary parts of both the linear refractive index modulation profile and of periodic nonlinearity-modulation spatial distribution. It was found that the combination of PT-symmetric linear and nonlinear lattices can stabilize lattice solitons and can provide unique soliton properties. It is revealed that the parameters of the linear lattice periodic potential play a significant role in controlling the extent of the stability domains and that the lattice solitons can stably propagate only in the low-power regime.
引用
收藏
页数:6
相关论文
共 42 条
[1]   Gap solitons in Bose-Einstein condensates in linear and nonlinear optical lattices [J].
Abdullaev, Fatkhulla ;
Abdumalikov, Abdulaziz ;
Galimzyanov, Ravil .
PHYSICS LETTERS A, 2007, 367 (1-2) :149-155
[2]   Solitons in PT-symmetric nonlinear lattices [J].
Abdullaev, Fatkhulla Kh. ;
Kartashov, Yaroslav V. ;
Konotop, Vladimir V. ;
Zezyulin, Dmitry A. .
PHYSICAL REVIEW A, 2011, 83 (04)
[3]   Spectral renormalization method for computing self-localized solutions to nonlinear systems [J].
Ablowitz, MJ ;
Musslimani, ZH .
OPTICS LETTERS, 2005, 30 (16) :2140-2142
[4]   Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 282 (06) :343-348
[5]  
[Anonymous], 2005, LECT NOTES PHYS, V661
[6]  
[Anonymous], 2008, DISSIPATIVE SOLITONS
[7]   The world of the complex Ginzburg-Landau equation [J].
Aranson, IS ;
Kramer, L .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :99-143
[8]   Faster than hermitian quantum mechanics [J].
Bender, Carl M. ;
Brody, Dorje C. ;
Jones, Hugh F. ;
Meister, Bernhard K. .
PHYSICAL REVIEW LETTERS, 2007, 98 (04)
[9]   Complex extension of quantum mechanics [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2002, 89 (27)
[10]   Must a Hamiltonian be Hermitian? [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
AMERICAN JOURNAL OF PHYSICS, 2003, 71 (11) :1095-1102