Using Weibull mixture distributions to model heterogeneous survival data

被引:22
作者
Marín, JM
Rodríguez-Bernal, MT
Wiper, MP
机构
[1] Univ Carlos III Madrid, Dept Estadist, Madrid 28903, Spain
[2] Univ Autonoma Madrid, Dept Matemat, Madrid, Spain
关键词
Bayesian; MCMC; mixtures; survival analysis; Weibull;
D O I
10.1081/SAC-200068372
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we use Bayesian methods to fit a Weibull mixture model with an unknown number of components to possibly right-censored survival data. This is done using the recently developed, birth-death MCMC algorithm. We also show how to estimate the survivor function and the expected hazard rate from the MCMC output.
引用
收藏
页码:673 / 684
页数:12
相关论文
共 19 条
[1]   Time-dependent hazard ratio: Modeling and hypothesis testing with application in lupus nephritis [J].
Abrahamowicz, M ;
MacKenzie, T ;
Esdaile, JM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (436) :1432-1439
[2]  
[Anonymous], BAYESIAN STAT
[3]  
[Anonymous], THESIS DUKE U N CARO
[4]  
[Anonymous], 1994, WEIBULL ANAL
[5]   SURVIVAL CURVE FOR CANCER PATIENTS FOLLOWING TREATMENT [J].
BERKSON, J ;
GAGE, RP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1952, 47 (259) :501-515
[6]   Nonparametric convergence assessment for MCMC model selection [J].
Brooks, SP ;
Giudici, P ;
Philippe, A .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2003, 12 (01) :1-22
[7]   Markov chain Monte Carlo convergence assessment via two-way analysis of variance [J].
Brooks, SP ;
Giudici, P .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2000, 9 (02) :266-285
[8]   Reversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers [J].
Cappé, O ;
Robert, CP ;
Rydén, T .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 :679-700
[9]  
CASTELLO JM, 2002, 313 U IOW DEP STAT A
[10]  
DIEBOLT J, 1994, J ROY STAT SOC B MET, V56, P363