Multifractal finite-size scaling and universality at the Anderson transition

被引:150
作者
Rodriguez, Alberto [1 ,2 ,3 ]
Vasquez, Louella J. [4 ,5 ]
Slevin, Keith [6 ]
Roemer, Rudolf A. [1 ,2 ]
机构
[1] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Ctr Comp Sci, Coventry CV4 7AL, W Midlands, England
[3] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain
[4] Univ Warwick, Inst Adv Study, Complex Sci Ctr, Coventry CV4 7AL, W Midlands, England
[5] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[6] Osaka Univ, Dept Phys, Grad Sch Sci, Osaka 5600043, Japan
来源
PHYSICAL REVIEW B | 2011年 / 84卷 / 13期
基金
英国工程与自然科学研究理事会;
关键词
METAL-INSULATOR-TRANSITION; CRITICAL-BEHAVIOR; ANISOTROPIC SYSTEMS; CRITICAL EXPONENT; WAVE-FUNCTIONS; DIMENSIONS; LOCALIZATION; STATES; MODEL;
D O I
10.1103/PhysRevB.84.134209
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We describe a new multifractal finite-size scaling (MFSS) procedure and its application to the Anderson localization-delocalization transition. MFSS permits the simultaneous estimation of the critical parameters and the multifractal exponents. Simulations of system sizes up to L-3 = 120(3) and involving nearly 10(6) independent wave functions have yielded unprecedented precision for the critical disorder W-c = 16.530(16.524,16.536) and the critical exponent nu = 1.590(1.579,1.602). We find that the multifractal exponents Lambda(q) exhibit a previously predicted symmetry relation and we confirm the nonparabolic nature of their spectrum. We explain in detail the MFSS procedure first introduced in our Letter [Phys. Rev. Lett. 105, 046403 (2010)] and, in addition, we show how to take account of correlations in the simulation data. The MFSS procedure is applicable to any continuous phase transition exhibiting multifractal fluctuations in the vicinity of the critical point.
引用
收藏
页数:16
相关论文
共 60 条
[1]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[2]  
Anderson E., 1987, LAPACK USERS GUIDE
[3]   Flow diagram of the metal-insulator transition in two dimensions [J].
Anissimova, S. ;
Kravchenko, S. V. ;
Punnoose, A. ;
Finkel'Stein, A. M. ;
Klapwijk, T. M. .
NATURE PHYSICS, 2007, 3 (10) :707-710
[4]   CRITICAL-BEHAVIOR OF EXTENDED STATES IN DISORDERED-SYSTEMS [J].
AOKI, H .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (06) :L205-L208
[5]   Direct observation of Anderson localization of matter waves in a controlled disorder [J].
Billy, Juliette ;
Josse, Vincent ;
Zuo, Zhanchun ;
Bernard, Alain ;
Hambrecht, Ben ;
Lugan, Pierre ;
Clement, David ;
Sanchez-Palencia, Laurent ;
Bouyer, Philippe ;
Aspect, Alain .
NATURE, 2008, 453 (7197) :891-894
[6]   JADAMILU:: a software code for computing selected eigenvalues of large sparse symmetric matrices [J].
Bollhoefer, Matthias ;
Notay, Yvan .
COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (12) :951-964
[7]  
Cardy J. L, 1996, CAMBRIDGE LECT NOTES
[8]   Experimental Observation of the Anderson Metal-Insulator Transition with Atomic Matter Waves [J].
Chabe, Julien ;
Lemarie, Gabriel ;
Gremaud, Benoit ;
Delande, Dominique ;
Szriftgiser, Pascal ;
Garreau, Jean Claude .
PHYSICAL REVIEW LETTERS, 2008, 101 (25)
[9]   Two-eigenfunction correlation in a multifractal metal and insulator [J].
Cuevas, E. ;
Kravtsov, V. E. .
PHYSICAL REVIEW B, 2007, 76 (23)
[10]  
Davidson A.C., 2003, STAT MODELS