A NEW ACCELERATED POSITIVE-INDEFINITE PROXIMAL ADMM FOR CONSTRAINED SEPARABLE CONVEX OPTIMIZATION PROBLEMS

被引:3
|
作者
Liu, Jie [1 ]
Chen, Jiawei [1 ]
Zheng, Jinlan [1 ]
Zhang, Xuerui [2 ]
Wan, Zhongping [3 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Chongqing Coll Humanities Sci & Technol, Sch Management, Chongqing 401524, Peoples R China
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
来源
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS | 2022年 / 6卷 / 06期
基金
中国国家自然科学基金;
关键词
  ADMM; Nonergodic convergence rate; Positive-indefinite proximal linearized ADMM; Sep-arable convex optimization; Violation of constraints; ALTERNATING DIRECTION METHOD;
D O I
10.23952/jnva.6.2022.6.08
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The alternating direction method of multipliers (ADMM) is a powerful method to solve con-strained convex optimization problems with the separable structure. The ADMM with the positive -indefinite proximal terms, which has ergodic convergent rate O( K1 ) with the number of iterations K, is more general than the ADMM with positive-definite proximal terms. In this paper, we propose a new accelerated positive-indefinite proximal linearized ADMM algorithm with positive-indefinite proximal matrix by the techniques of extrapolation. We obtain the nonergodic convergence rate O( K1 ) in the sense of objective values and the nonergodic convergence rate O(1 root K) in the sense of iterative sequence of the proposed method as well as the upper bound of the violation of constraints. Numerical results are reported to show the efficiency of the proposed method.
引用
收藏
页码:707 / 723
页数:17
相关论文
共 50 条
  • [1] Inertial Proximal ADMM for Linearly Constrained Separable Convex Optimization
    Chen, Caihua
    Chan, Raymond H.
    Ma, Shiqian
    Yang, Junfeng
    SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (04): : 2239 - 2267
  • [2] GENERALIZED ADMM WITH OPTIMAL INDEFINITE PROXIMAL TERM FOR LINEARLY CONSTRAINED CONVEX OPTIMIZATION
    Jiang, Fan
    Wu, Zhongming
    Cai, Xingju
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2020, 16 (02) : 835 - 856
  • [3] A MAJORIZED ADMM WITH INDEFINITE PROXIMAL TERMS FOR LINEARLY CONSTRAINED CONVEX COMPOSITE OPTIMIZATION
    Li, Min
    Sun, Defeng
    Toh, Kim-Chuan
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (02) : 922 - 950
  • [4] Convergence analysis of positive-indefinite proximal ADMM with a Glowinski's relaxation factor
    Chen, Jiawei
    Wang, Yiyun
    He, Hongjin
    Lv, Yibing
    NUMERICAL ALGORITHMS, 2020, 83 (04) : 1415 - 1440
  • [5] Convergence analysis of positive-indefinite proximal ADMM with a Glowinski’s relaxation factor
    Jiawei Chen
    Yiyun Wang
    Hongjin He
    Yibing Lv
    Numerical Algorithms, 2020, 83 : 1415 - 1440
  • [6] An inexact accelerated stochastic ADMM for separable convex optimization
    Bai, Jianchao
    Hager, William W.
    Zhang, Hongchao
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 81 (02) : 479 - 518
  • [7] An inexact accelerated stochastic ADMM for separable convex optimization
    Jianchao Bai
    William W. Hager
    Hongchao Zhang
    Computational Optimization and Applications, 2022, 81 : 479 - 518
  • [8] An inexact version of the symmetric proximal ADMM for solving separable convex optimization
    Adona, Vando A.
    Goncalves, Max L. N.
    NUMERICAL ALGORITHMS, 2023, 94 (01) : 1 - 28
  • [9] An inexact version of the symmetric proximal ADMM for solving separable convex optimization
    Vando A. Adona
    Max L. N. Gonçalves
    Numerical Algorithms, 2023, 94 : 1 - 28
  • [10] A PROXIMAL ADMM WITH THE BROYDEN FAMILY FOR CONVEX OPTIMIZATION PROBLEMS
    Gu, Yan
    Yamashita, Nobuo
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (05) : 2715 - 2732