Using machine learning to reveal the population vector from EEG signals

被引:14
|
作者
Kobler, Reinmar J. [1 ]
Almeida, Ines [1 ,2 ]
Sburlea, Andreea, I [1 ]
Mueller-Putz, Gernot R. [1 ]
机构
[1] Graz Univ Technol, Inst Neural Engn, A-8010 Graz, Styria, Austria
[2] Univ Lisbon, Fac Sci, P-1749016 Lisbon, Lisbon District, Portugal
基金
欧洲研究理事会;
关键词
electroencephalography; arm movement; machine learning; population vector; movement direction; continuous movement; source imaging; BRAIN-COMPUTER INTERFACES; ARM MOVEMENTS; HAND MOVEMENTS; MOTOR; DIRECTION; ELECTROENCEPHALOGRAM; OSCILLATIONS; CORTEX; TRAJECTORIES; RESTORATION;
D O I
10.1088/1741-2552/ab7490
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Since the discovery of the population vector that directly relates neural spiking activity with arm movement direction, it has become feasible to control robotic arms and neuroprostheses using invasively recorded brain signals. For non-invasive approaches, a direct relation between human brain signals and arm movement direction is yet to be established. Approach. Here, we investigated electroencephalographic (EEG) signals in temporal and spectral domains in a continuous, circular arm movement task. Using machine learning methods that respect the linear mixture of brain activity within EEG signals, we show that directional information is represented in the temporal domain in amplitude modulations of the same frequency as the arm movement, and in the spectral domain in power modulations of the 20-24 Hz frequency band. Main results. In the temporal domain, the directional information was mainly expressed in primary sensorimotor cortex (SM1) and posterior parietal cortex (PPC) contralateral to the moving arm, while in the spectral domain SM1 and PPC of both hemispheres predicted arm movement direction. The different cortical representations suggest distinct neural representations in both domains. Significance. This direct relation between neural activity and arm movement direction in both domains demonstrates the potential of machine learning to reveal neuroscientific insights about the dynamics of human arm movements.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Classification of Motor Imagery EEG Signals Using Machine Learning
    Abdeltawab, Amr
    Ahmad, Anita
    2020 IEEE 10TH INTERNATIONAL CONFERENCE ON SYSTEM ENGINEERING AND TECHNOLOGY (ICSET), 2020, : 196 - 201
  • [12] Comparison of Machine Learning Techniques Based Brain Source Localization Using EEG Signals
    Jatoi, Munsif Ali
    Dharejo, Fayaz Ali
    Teevino, Sadam Hussain
    CURRENT MEDICAL IMAGING, 2021, 17 (01) : 64 - 72
  • [13] A Machine Learning Approach for Person Authentication from EEG Signals
    Chowdhury, A. M. Mahmud
    Imtiaz, Masudul H.
    2023 IEEE 32ND MICROELECTRONICS DESIGN & TEST SYMPOSIUM, MDTS, 2023,
  • [14] A System for the Study of Emotions with EEG Signals Using Machine Learning and Deep Learning
    Jaswanth, Vasupalli
    Naren, J.
    COGNITIVE INFORMATICS AND SOFT COMPUTING, 2020, 1040 : 59 - 65
  • [15] A machine learning approach using EEG signals to measure sleep quality
    Ravan M.
    AIMS Electronics and Electrical Engineering, 2019, 3 (04): : 347 - 358
  • [16] Classification of Epileptic EEG Signals Using Synchrosqueezing Transform and Machine Learning
    Cura, Ozlem Karabiber
    Akan, Aydin
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2021, 31 (05)
  • [17] Prediction of Sleep Apnea Using EEG Signals and Machine Learning Algorithms
    Onargan, Aysu
    Gavcar, Busra
    Caliskan, Gulizar
    Akan, Aydin
    TIP TEKNOLOJILERI KONGRESI (TIPTEKNO'21), 2021,
  • [18] A Machine Learning Framework for Automatic Diagnosis of Schizophrenia Using EEG Signals
    Ranjan, Rakesh
    Sahana, Bikash Chandra
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [19] Stress Detection from Different Environments for VIP Using EEG Signals and Machine Learning Algorithms
    Karim, Mohammad Safkat
    Al Rafsan, Abdullah
    Surovi, Tahmina Rahman
    Amin, Md Hasibul
    Parvez, Mohammad Zavid
    INTELLIGENT HUMAN COMPUTER INTERACTION, PT I, 2021, 12615 : 163 - 173
  • [20] Novel Features Extraction From EEG Signals for Epilepsy Detection Using Machine Learning Model
    Pandya, Vandana
    Shukla, Urvashi P.
    Joshi, Amit M.
    IEEE SENSORS LETTERS, 2023, 7 (10)