Using machine learning to reveal the population vector from EEG signals

被引:14
|
作者
Kobler, Reinmar J. [1 ]
Almeida, Ines [1 ,2 ]
Sburlea, Andreea, I [1 ]
Mueller-Putz, Gernot R. [1 ]
机构
[1] Graz Univ Technol, Inst Neural Engn, A-8010 Graz, Styria, Austria
[2] Univ Lisbon, Fac Sci, P-1749016 Lisbon, Lisbon District, Portugal
基金
欧洲研究理事会;
关键词
electroencephalography; arm movement; machine learning; population vector; movement direction; continuous movement; source imaging; BRAIN-COMPUTER INTERFACES; ARM MOVEMENTS; HAND MOVEMENTS; MOTOR; DIRECTION; ELECTROENCEPHALOGRAM; OSCILLATIONS; CORTEX; TRAJECTORIES; RESTORATION;
D O I
10.1088/1741-2552/ab7490
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Since the discovery of the population vector that directly relates neural spiking activity with arm movement direction, it has become feasible to control robotic arms and neuroprostheses using invasively recorded brain signals. For non-invasive approaches, a direct relation between human brain signals and arm movement direction is yet to be established. Approach. Here, we investigated electroencephalographic (EEG) signals in temporal and spectral domains in a continuous, circular arm movement task. Using machine learning methods that respect the linear mixture of brain activity within EEG signals, we show that directional information is represented in the temporal domain in amplitude modulations of the same frequency as the arm movement, and in the spectral domain in power modulations of the 20-24 Hz frequency band. Main results. In the temporal domain, the directional information was mainly expressed in primary sensorimotor cortex (SM1) and posterior parietal cortex (PPC) contralateral to the moving arm, while in the spectral domain SM1 and PPC of both hemispheres predicted arm movement direction. The different cortical representations suggest distinct neural representations in both domains. Significance. This direct relation between neural activity and arm movement direction in both domains demonstrates the potential of machine learning to reveal neuroscientific insights about the dynamics of human arm movements.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Emotion Detection from EEG Signals Using Machine Deep Learning Models
    Fernandes, Joao Vitor Marques Rabelo
    de Alexandria, Auzuir Ripardo
    Marques, Joao Alexandre Lobo
    de Assis, Debora Ferreira
    Motta, Pedro Crosara
    Silva, Bruno Riccelli dos Santos
    BIOENGINEERING-BASEL, 2024, 11 (08):
  • [2] Cognitive Workload Recognition Using EEG Signals and Machine Learning: A Review
    Zhou, Yueying
    Huang, Shuo
    Xu, Ziming
    Wang, Pengpai
    Wu, Xia
    Zhang, Daoqiang
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (03) : 799 - 818
  • [3] Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review
    Rasheed, Khansa
    Qayyum, Adnan
    Qadir, Junaid
    Sivathamboo, Shobi
    Kwan, Patrick
    Kuhlmann, Levin
    O'Brien, Terence
    Razi, Adeel
    IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2021, 14 : 139 - 155
  • [4] An Interpretable Machine Learning Method for the Detection of Schizophrenia Using EEG Signals
    Vazquez, Manuel A.
    Maghsoudi, Arash
    Marino, Ines P.
    FRONTIERS IN SYSTEMS NEUROSCIENCE, 2021, 15
  • [5] Emotion Recognition with Machine Learning Using EEG Signals
    Bazgir, Omid
    Mohammadi, Zeynab
    Habibi, Seyed Amir Hassan
    2018 25TH IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING AND 2018 3RD INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), 2018, : 149 - 153
  • [6] Epileptic Seizure Detection in EEG Signals Using Machine Learning and Deep Learning Techniques
    Kode, Hepseeba
    Elleithy, Khaled
    Almazaydeh, Laiali
    IEEE ACCESS, 2024, 12 : 80657 - 80668
  • [7] Mental Workload Estimation from EEG Signals Using Machine Learning Algorithms
    Cheema, Baljeet Singh
    Samima, Shabnam
    Sarma, Monalisa
    Samanta, Debasis
    ENGINEERING PSYCHOLOGY AND COGNITIVE ERGONOMICS (EPCE 2018), 2018, 10906 : 265 - 284
  • [8] Seizure Type Classification Using EEG Signals and Machine Learning: Setting a Benchmark
    Roy, S.
    Asif, U.
    Tang, J.
    Harrer, S.
    2020 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM, 2020,
  • [9] Real-time classification of EEG signals using Machine Learning deployment
    Chowdhuri, Swati
    Saha, Satadip
    Karmakar, Samadrita
    Chanda, Ankur
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2024, 34 (04):
  • [10] Attention Detection Using EEG Signals and Machine Learning: A Review
    Sun, Qianru
    Zhou, Yueying
    Gong, Peiliang
    Zhang, Daoqiang
    MACHINE INTELLIGENCE RESEARCH, 2025, 22 (02) : 219 - 238