An assessment of theoretical methods for the calculation of accurate structures and S-N bond dissociation energies of S-nitrosothiols (RSNOs)

被引:52
作者
Baciu, C [1 ]
Gauld, JW [1 ]
机构
[1] Univ Windsor, Dept Chem & Biochem, Windsor, ON N9B 3P4, Canada
关键词
D O I
10.1021/jp035205j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The ability of conventional electron correlation (MP2 and QCISD) and density functional theory (B3LYP and B3P86) methods to provide accurate and reliable optimized structures, and homolytic S-N bond dissociation energies (BDEs), for a range of S-nitrosothiols (RSNOs) has been investigated. It is found that, in general, for any given method the 6-311 +G(2df,p) or larger basis set must be used to obtain reliable structures. With a suitably large basis set, the different methods generally give optimized structures in close agreement with each other. However, the B3LYP method consistently overestimates the RS-NO bond length. The trends observed are found to be due in part to the fact that the RS-NO bond does not possess considerable double-bond character as previously suggested, but rather is a long single S-N bond, with the -NO moiety possessing considerable multiple-bond character. The B3P86/6-311+G(2df,p) method consistently gives BDEs in best agreement with values obtained with higher accuracy methods, e.g., CBS-Q, while the B3LYP method increasingly underestimates BDEs with increasing RSNO size. In contrast, for all RSNOs, the QCISD method significantly underestimates BDEs by as much as 55 kJ mol(-1). Overall, the B3P86/6-311+G(2df,p) method is found to perform the best of the methods considered for obtaining optimized structures and homolytic S-N BDEs of S-nitrosothiols.
引用
收藏
页码:9946 / 9952
页数:7
相关论文
共 34 条
[1]   S-nitrosothiols:: a class of nitric oxide-donor drugs [J].
Al-Sa'doni, H ;
Ferro, A .
CLINICAL SCIENCE, 2000, 98 (05) :507-520
[2]   ENDOTHELIUM-DEPENDENT INHIBITION OF PLATELET-AGGREGATION [J].
AZUMA, H ;
ISHIKAWA, M ;
SEKIZAKI, S .
BRITISH JOURNAL OF PHARMACOLOGY, 1986, 88 (02) :411-415
[3]   S-N dissociation energies of S-nitrosothiols:: On the origins of nitrosothiol decomposition rates [J].
Bartberger, MD ;
Mannion, JD ;
Powell, SC ;
Stamler, JS ;
Houk, KN ;
Toone, EJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (36) :8868-8869
[4]   Theory, spectroscopy, and crystallographic analysis of S-nitrosothiols:: Conformational distribution dictates spectroscopic behavior [J].
Bartberger, MD ;
Houk, KN ;
Powell, SC ;
Mannion, JD ;
Lo, KY ;
Stamler, JS ;
Toone, EJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (24) :5889-5890
[5]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[6]  
COTTON FA, 1999, ADV INORG CHEM, P511
[7]   Gaussian-3 (G3) theory for molecules containing first and second-row atoms [J].
Curtiss, LA ;
Raghavachari, K ;
Redfern, PC ;
Rassolov, V ;
Pople, JA .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (18) :7764-7776
[8]   Gaussian-3 theory using reduced Moller-Plesset order [J].
Curtiss, LA ;
Redfern, PC ;
Raghavachari, K ;
Rassolov, V ;
Pople, JA .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (10) :4703-4709
[9]   Thermal stability of primary S-nitrosothiols:: Roles of autocatalysis and structural effects on the rate of nitric oxide release [J].
de Oliveira, MG ;
Shishido, SM ;
Seabra, AB ;
Morgon, NH .
JOURNAL OF PHYSICAL CHEMISTRY A, 2002, 106 (38) :8963-8970
[10]  
DEBELDER AJ, 1994, CARDIOVASC RES, V28, P691