Ultra-broadband light trapping using nanotextured decoupled graphene multilayers

被引:63
作者
Anguita, Jose V. [1 ]
Ahmad, Muhammad [1 ]
Haq, Sajad [2 ,3 ]
Allam, Jeremy [1 ]
Silva, S. Ravi P. [1 ]
机构
[1] Univ Surrey, Adv Technol Inst, Guildford GU2 7XH, Surrey, England
[2] Adv Technol Ctr, BAE Syst, Sowerby Bldg 20R,FPC 267,POB 5, Bristol BS34 7QW, Avon, England
[3] QinetiQ, Cody Technol Pk,Ively Rd, Farnborough GU14 0LX, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
CARBON; ENHANCEMENT; ABSORPTION; GRAPHITE; REFLECTION; DESIGN; GROWTH;
D O I
10.1126/sciadv.1501238
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to engineer a thin two-dimensional surface for light trapping across an ultra-broad spectral range is central for an increasing number of applications including energy, optoelectronics, and spectroscopy. Although broadband light trapping has been obtained in tall structures of carbon nanotubes with millimeter-tall dimensions, obtaining such broadband light-trapping behavior from nanometer-scale absorbers remains elusive. We report a method for trapping the optical field coincident with few-layer decoupled graphene using field localization within a disordered distribution of subwavelength-sized nanotexturing metal particles. We show that the combination of the broadband light-coupling effect from the disordered nanotexture combined with the natural thinness and remarkably high and wavelength-independent absorption of graphene results in an ultrathin (15 nm thin) yet ultrabroadband blackbody absorber, featuring 99% absorption spanning from the mid-infrared to the ultraviolet. We demonstrate the utility of our approach to produce the blackbody absorber on delicate opto-microelectromechanical infrared emitters, using a low-temperature, noncontact fabrication method, which is also large-area compatible. This development may pave a way to new fabrication methodologies for optical devices requiring light management at the nanoscale.
引用
收藏
页数:8
相关论文
共 55 条
[1]   Nature's guiding light [J].
不详 .
NATURE PHOTONICS, 2008, 2 (11) :639-639
[2]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[3]  
Battaglia C, 2011, NAT PHOTONICS, V5, P535, DOI [10.1038/nphoton.2011.198, 10.1038/NPHOTON.2011.198]
[4]   Design and global optimization of high-efficiency thermophotovoltaic systems [J].
Bermel, Peter ;
Ghebrebrhan, Michael ;
Chan, Walker ;
Yeng, Yi Xiang ;
Araghchini, Mohammad ;
Hamam, Rafif ;
Marton, Christopher H. ;
Jensen, Klavs F. ;
Soljacic, Marin ;
Joannopoulos, John D. ;
Johnson, Steven G. ;
Celanovic, Ivan .
OPTICS EXPRESS, 2010, 18 (19) :A314-A334
[5]   BAND STRUCTURE AND INFRARED ABSORPTION OF GRAPHITE [J].
BOYLE, WS ;
NOZIERES, P .
PHYSICAL REVIEW, 1958, 111 (03) :782-785
[6]   Electronic modulation of infrared radiation in graphene plasmonic resonators [J].
Brar, Victor W. ;
Sherrott, Michelle C. ;
Jang, Min Seok ;
Kim, Seyoon ;
Kim, Laura ;
Choi, Mansoo ;
Sweatlock, Luke A. ;
Atwater, Harry A. .
NATURE COMMUNICATIONS, 2015, 6
[7]   Measuring the degree of stacking order in graphite by Raman spectroscopy [J].
Cancado, L. G. ;
Takai, K. ;
Enoki, T. ;
Endo, M. ;
Kim, Y. A. ;
Mizusaki, H. ;
Speziali, N. L. ;
Jorio, A. ;
Pimenta, M. A. .
CARBON, 2008, 46 (02) :272-275
[8]   REDUCTION OF LENS REFLECTION BY MOTH EYE PRINCIPLE [J].
CLAPHAM, PB ;
HUTLEY, MC .
NATURE, 1973, 244 (5414) :281-282
[9]  
Clark J, 2010, NAT PHOTONICS, V4, P438, DOI [10.1038/NPHOTON.2010.160, 10.1038/nphoton.2010.160]
[10]   Strong plasmonic enhancement of photovoltage in graphene [J].
Echtermeyer, T. J. ;
Britnell, L. ;
Jasnos, P. K. ;
Lombardo, A. ;
Gorbachev, R. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Ferrari, A. C. ;
Novoselov, K. S. .
NATURE COMMUNICATIONS, 2011, 2