Interrelated two-way clustering and its application on gene expression data

被引:9
作者
Tang, C [1 ]
Zhang, AD [1 ]
机构
[1] SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
关键词
microarray; sample analysis; clustering;
D O I
10.1142/S0218213005002272
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microarray technologies are capable of simultaneously measuring the signals for thousands of messenger RNAs and large numbers of proteins from single samples. Arrays are now widely used in basic biomedical research for mRNA expression profiling and are increasingly being used to explore patterns of gene expression in clinical research. Most research has focused on the interpretation of the meaning of the microarray data which are transformed into gene expression matrices where usually the rows represent genes, the columns represent various samples. Clustering samples can be done by analyzing and eliminating of irrelevant genes. However, majority methods are supervised (or assisted by domain knowledge), less attention has been paid on unsupervised approaches which are important when little domain knowledge is available. In this paper, we present a new framework for unsupervised analysis of gene expression data, which applies an interrelated two-way clustering approach on the gene expression matrices. The goal of clustering is to identify important genes and perform cluster discovery on samples. The advantage of this approach is that we can dynamically manipulate the relationship between the gene clusters and sample groups while conducting an iterative clustering through both of them. The performance of the proposed method with various gene expression data sets is also illustrated.
引用
收藏
页码:577 / 597
页数:21
相关论文
共 64 条
  • [1] Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    Alizadeh, AA
    Eisen, MB
    Davis, RE
    Ma, C
    Lossos, IS
    Rosenwald, A
    Boldrick, JG
    Sabet, H
    Tran, T
    Yu, X
    Powell, JI
    Yang, LM
    Marti, GE
    Moore, T
    Hudson, J
    Lu, LS
    Lewis, DB
    Tibshirani, R
    Sherlock, G
    Chan, WC
    Greiner, TC
    Weisenburger, DD
    Armitage, JO
    Warnke, R
    Levy, R
    Wilson, W
    Grever, MR
    Byrd, JC
    Botstein, D
    Brown, PO
    Staudt, LM
    [J]. NATURE, 2000, 403 (6769) : 503 - 511
  • [2] Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    Alon, U
    Barkai, N
    Notterman, DA
    Gish, K
    Ybarra, S
    Mack, D
    Levine, AJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) : 6745 - 6750
  • [3] Singular value decomposition for genome-wide expression data processing and modeling
    Alter, O
    Brown, PO
    Botstein, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) : 10101 - 10106
  • [4] [Anonymous], 2001, Bioinformatics
  • [5] Making genome expression data meaningful: Prediction and discovery of classes of cancer through a connectionist learning approach
    Azuaje, F
    [J]. IEEE INTERNATIONAL SYMPOSIUM ON BIO-INFORMATICS AND BIOMEDICAL ENGINEERING, PROCEEDINGS, 2000, : 208 - 213
  • [6] BARASH Y, 2001, P 5 ANN INT C RES CO, P12
  • [7] Clustering gene expression patterns
    Ben-Dor, A
    Shamir, R
    Yakhini, Z
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 1999, 6 (3-4) : 281 - 297
  • [8] Ben-Dor A, 2001, P 5 ANN INT C COMP M, P31, DOI DOI 10.1145/369133.369167
  • [9] BHADRA D, 2001, 200103 U BUFF DEP CO
  • [10] BIEDL T, 2001, 200114 U WAT