A scalar product for copulas

被引:16
作者
Siburg, Karl Friedrich [1 ]
Stoimenov, Pavel A. [2 ]
机构
[1] Tech Univ, Fak Math, D-44227 Dortmund, Germany
[2] Tech Univ, Fak Stat, D-44227 Dortmund, Germany
关键词
copula; scalar product; Sobolev space;
D O I
10.1016/j.jmaa.2008.02.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a scalar product for n-dimensional copulas, based on the Sobolev scalar product for W(1,2)-functions. The corresponding norm has quite remarkable properties and provides a new, geometric framework for copulas. We show that, in the bivariate case, it measures invertibility properties of copulas with respect to the *-operation introduced by Darsow et al. (1992). The unique copula of minimal norm is the null element for the *-operation, whereas the copulas of maximal norm are precisely the invertible elements. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:429 / 439
页数:11
相关论文
共 14 条
[1]   APPROXIMATION THEOREMS FOR MARKOV OPERATORS [J].
BROWN, JR .
PACIFIC JOURNAL OF MATHEMATICS, 1966, 16 (01) :13-&
[2]  
Cherubini U., 2004, Copula Methods in Finance, DOI DOI 10.1002/9781118673331
[3]   COPULAS AND MARKOV-PROCESSES [J].
DARSOW, WF ;
NGUYEN, B ;
OLSEN, ET .
ILLINOIS JOURNAL OF MATHEMATICS, 1992, 36 (04) :600-642
[4]  
Darsow William F., 1995, Int. J. Math. Math. Sci., V18, P417
[5]  
Evans L.C., 1998, PARTIAL DIFFERENTIAL
[6]   DOUBLY STOCHASTIC-MEASURES, TOPOLOGY, AND LATTICEWORK HAIRPINS [J].
KAMINSKI, A ;
MIKUSINSKI, P ;
SHERWOOD, H ;
TAYLOR, MD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 152 (01) :252-268
[7]   Strong approximation of copulas [J].
Li, X ;
Mikusinski, P ;
Taylor, MD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 225 (02) :608-623
[8]  
Mikusinski P., 1992, STOCHASTICA, V13, P61
[9]  
Nelsen R.B., 1999, An Introduction to Copulas
[10]  
Olsen E. T., 1996, IMS Lecture Notes Monograph Series, V28, P244