MarineTools.temporal: A Python']Python package to simulate Earth and environmental time series

被引:7
作者
Cobos, M. [1 ,2 ]
Otinar, P. [2 ]
Magana, P. [1 ,2 ]
Lira-Loarca, A. [3 ]
Baquerizo, A. [1 ,2 ]
机构
[1] Univ Granada, Dept Struct Mech & Hydraul Engn, Edificio Politecn,Campus Fuentenueva, Granada 18071, Spain
[2] Andalusian Inst Earth Syst Res, Avda Mediterraneo S-N, Granada, Spain
[3] Univ Genoa, Dept Civil Chem & Environm Engn, Via Montallegro 1, I-16145 Genoa, Italy
关键词
Time expansion of parameters; Non-stationary probability models; Stochastic characterization; Environmental modelling; MODELING PROCESS; UNCERTAINTY; EVOLUTION; DESIGN;
D O I
10.1016/j.envsoft.2022.105359
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The assessment of the uncertainty about the evolution of complex processes usually requires different re-alizations consisting of multivariate temporal signals of environmental data. However, it is common to have only one observational set. MarineTools.temporal is an open-source Python package for the non-stationary parametric statistical analysis of vector random processes suitable for environmental and Earth modelling. It takes a single timeseries of observations and allows the simulation of many time series with the same probabilistic behavior. The software generalizes the use of piecewise and compound distributions with any number of arbitrary continuous distributions. The code contains, among others, multi-model negative log-likely functions, wrapped-normal distributions, and generalized Fourier timeseries expansion. Its programming philosophy significantly improves the computing time and makes it compatible with future extensions of scipy.stats. We apply it to the analysis of freshwater river discharge, water currents, and the simulation of ensemble projections of sea waves, to show its capabilities.
引用
收藏
页数:14
相关论文
共 35 条
[1]   Human interaction with large scale coastal morphological evolution. An assessment of the uncertainty [J].
Baquerizo, Asuncion ;
Losada, Miguel A. .
COASTAL ENGINEERING, 2008, 55 (7-8) :569-580
[2]   AN ANALYSIS OF TRANSFORMATIONS [J].
BOX, GEP ;
COX, DR .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1964, 26 (02) :211-252
[3]  
Cobos M., 2020, MODEL STUDY CONSEQUE
[4]   Non-stationary rainfall and natural flows modeling at the watershed scale [J].
Eguen, M. ;
Aguilar, C. ;
Solari, S. ;
Losada, M. A. .
JOURNAL OF HYDROLOGY, 2016, 538 :767-782
[5]   Quantifying Uncertainty in the Modelling Process; Future Extreme Flood Event Projections Across the UK [J].
Ellis, Cameron ;
Visser-Quinn, Annie ;
Aitken, Gordon ;
Beevers, Lindsay .
GEOSCIENCES, 2021, 11 (01) :1-20
[6]   Array programming with NumPy [J].
Harris, Charles R. ;
Millman, K. Jarrod ;
van der Walt, Stefan J. ;
Gommers, Ralf ;
Virtanen, Pauli ;
Cournapeau, David ;
Wieser, Eric ;
Taylor, Julian ;
Berg, Sebastian ;
Smith, Nathaniel J. ;
Kern, Robert ;
Picus, Matti ;
Hoyer, Stephan ;
van Kerkwijk, Marten H. ;
Brett, Matthew ;
Haldane, Allan ;
del Rio, Jaime Fernandez ;
Wiebe, Mark ;
Peterson, Pearu ;
Gerard-Marchant, Pierre ;
Sheppard, Kevin ;
Reddy, Tyler ;
Weckesser, Warren ;
Abbasi, Hameer ;
Gohlke, Christoph ;
Oliphant, Travis E. .
NATURE, 2020, 585 (7825) :357-362
[7]   Matplotlib: A 2D graphics environment [J].
Hunter, John D. .
COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (03) :90-95
[8]  
IH, 2019, EL MET BAS DAT PROYE
[9]   Optimization at different time scales for the design and management of an oscillating water column system [J].
Jalon, Maria L. ;
Baquerizo, Asuncion ;
Losada, Miguel A. .
ENERGY, 2016, 95 :110-123
[10]   Statistical modelling of extreme ocean environments for marine design: A review [J].
Jonathan, Philip ;
Ewans, Kevin .
OCEAN ENGINEERING, 2013, 62 :91-109