Finite temperature dynamics of vortices in the two dimensional anisotropic Heisenberg model

被引:13
作者
Kamppeter, T [1 ]
Mertens, FG
Sánchez, A
Bishop, AR
Domínguez-Adame, F
Gronbech-Jensen, N
机构
[1] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany
[2] Univ Carlos III Madrid, Dept Matemat, Grp Interdisciplinar Sistemas Complicados, Madrid, Spain
[3] Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[4] Univ Calif Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[5] Univ Complutense Madrid, Fac Fis, Dept Fis Mat, Grp Interdisciplinar Sistemas Complicados, Madrid 28040, Spain
关键词
D O I
10.1007/s100510050653
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study the effects of finite temperature on the dynamics of non-planar vortices in the classical, two-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry. To this end, we analyze a generalized Landau-Lifshitz equation including additive white noise and Gilbert damping. Using a collective variable theory with no adjustable parameters we derive an equation of motion for the vortices with stochastic forces which are shown to represent white noise with an effective diffusion constant linearly dependent on temperature. We solve these stochastic equations of motion by means of a Green's function formalism and obtain the mean vortex trajectory and its variance. We find a non-standard time dependence for the variance of the components perpendicular to the driving force. We compare the analytical results with Langevin dynamics simulations and find a good agreement up to temperatures of the order of 25% of the Kosterlitz-Thouless transition temperature. Finally, we discuss the reasons why our approach is not appropriate for higher temperatures as well as the discreteness effects observed in the numerical simulations.
引用
收藏
页码:607 / 618
页数:12
相关论文
共 34 条
[1]  
Bishop A.R., 1993, NONLINEARITY CONDENS
[2]   IDENTIFICATION OF FLUCTUATING SUSCEPTIBILITY COMPONENTS IN RB2CRCL4 - A QUASI-2-DIMENSIONAL EASY PLANE FERROMAGNET [J].
BRAMWELL, ST ;
HUTCHINGS, MT ;
NORMAN, J ;
PYNN, R ;
DAY, P .
JOURNAL DE PHYSIQUE, 1988, 49 (C-8) :1435-1436
[3]   Dynamic behavior of vortices in the classical two-dimensional anisotropic Heisenberg model [J].
Costa, JER ;
Costa, BV ;
Landau, DP .
PHYSICAL REVIEW B, 1998, 57 (18) :11510-11516
[4]   STATISTICAL-MECHANICS OF ONE-DIMENSIONAL SOLITARY-WAVE-BEARING SCALAR FIELDS - EXACT RESULTS AND IDEAL-GAS PHENOMENOLOGY [J].
CURRIE, JF ;
KRUMHANSL, JA ;
BISHOP, AR ;
TRULLINGER, SE .
PHYSICAL REVIEW B, 1980, 22 (02) :477-496
[5]   Lifetime of vortices in two-dimensional easy-plane ferromagnets [J].
Dimitrov, DA ;
Wysin, GM .
PHYSICAL REVIEW B, 1996, 53 (13) :8539-8542
[6]  
DIMITROV DA, 1998, PREPRINT
[7]  
GAIDIDEI Y, 1998, UNPUB
[8]   MAGNETIC-FIELD DEPENDENCE OF THE PHOSPHORUS NUCLEAR SPIN-RELAXATION RATE IN THE QUASI-2-DIMENSIONAL XY ANTIFERROMAGNET BANI2(PO4)2 [J].
GAVEAU, P ;
BOUCHER, JP ;
REGNAULT, LP ;
HENRY, Y .
JOURNAL OF APPLIED PHYSICS, 1991, 69 (08) :6228-6230
[9]   VORTICES IN THE CLASSICAL TWO-DIMENSIONAL ANISOTROPIC HEISENBERG-MODEL [J].
GOUVEA, ME ;
WYSIN, GM ;
BISHOP, AR ;
MERTENS, FG .
PHYSICAL REVIEW B, 1989, 39 (16) :11840-11849
[10]   LONG-TIME OVERDAMPED LANGEVIN DYNAMICS OF MOLECULAR CHAINS [J].
GRONBECHJENSEN, N ;
DONIACH, S .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1994, 15 (09) :997-1012